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Abstract

This document contains the Appendices for “Audience Costs and the Dynamics of War
and Peace.” In Appendix A, we derive the equilibrium constraint, and we characterize
an example equilibrium in Appendix B. In Appendix C, we discuss our implementation
of the CMLE. Appendix D presents Monte Carlo Experiments, and Appendix E con-
tains a discussion of time-invariant covariates. In Appendix F, we provide a table form
of the audience cost parameters and their associated standard errors, and Appendix
G illustrates the distribution of audience costs in autocratic regimes. We discuss the
procedure for substantive effects in Section H. Appendices I and J contain additional
robustness checks and substantive effects, respectively. Finally, Appendix K contains
model fit exercises.

A Characterizing Equilibria

As in Aguirregabiria and Mira (2007), we characterize equilibria with dynamic expected

utilities. Let vi(ai, s) denote i’s net-of-shock expected utility from choosing action ai in

state s and continuing to the play the game for an infinite number of periods, and write

vi = (vi(ai, s))(ai,s)∈A2 for every country i. In other words, given a vector of expected values

vi and a vector of random shocks εi, country i chooses action ai in state s if and essentially

only if

ai = argmax
ai∈{1,2,3}

{vi(ai, s) + εi(ai)}.

Thus, vi is identical to a cut-off strategy for country i. Because εi is distributed type 1 extreme

value, i chooses ai in state s with probability P (ai, s; vi), where

P (ai, s; vi) =
exp(vi(ai, s))∑
a′i

exp(vi(a′i, s))
. (5)
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If g is the distribution of εi, described above, we write country i’s average expected utility in

state s as G(s, vi), which takes the form

G(s, vi) =

∫
max
ai
{vi(ai, s) + εi(ai)} g(εi)dεi,

and simplifies to

G(s, vi) = log

(∑
ai

exp(vi(ai, s))

)
+ C

where C is Euler’s constant (McFadden 1978, Corollary p. 82). Consider a profile v = (vi, vj)

of action-state values. Then country i’s iterative value of action ai in state s, denoted

Φij(ai, s, v; θ), is written as

Φij(ai, s, v; θ) =
∑
aj

P (aj, s; vj)︸ ︷︷ ︸
expectation

over j’s actions

[
uij(ai, aj, s; θ)︸ ︷︷ ︸

today’s
payoff

+δG (max{ai, aj}, vi)︸ ︷︷ ︸
expectation over

tomorrow’s payoff

]
. (6)

In words, Equation 6 takes a profile of values v, supposes countries play according to the

associated choice probabilities, and then returns new expected values of each action in each

state. The iterative value, Φij(ai, s, v; θ), is comprised of three components. First, country i

weights its opponent’s actions by the corresponding choice probabilities, P (aj, s; vj). Second,

country i receives an immediate payoff, uij(ai, aj, s; θ). Finally, country i receives a discounted

expected future payoff, δG (max{ai, aj}, vi). The profile v is an equilibrium if and only if

Φij(ai, s, v; θ) = vi(ai, s) for every country i, every action ai, and every state s. Hence, v is an

equilibrium profile if and only if it is a fixed point of these iterative value functions. Formally,

write Φij(v; θ) as Φij(v; θ) = ×ai ×s Φij(ai, s, v; θ) and Φ(v; θ) = Φij(v; θ)×Φji(v; θ). Then an

equilibrium is a profile v such that Φ(v; θ) = v.

Notice the that function Φij(ai, s, v; θ) is a weighted sum of current stage utilities and

discounted expected payoffs. When the latter are sufficiently bounded, the continuous function

Φ maps a convex and compact set into itself, so an equilibrium exists. Formally, define B ≥ 0

as B = maxi,j,a,s {|uij(a, s; θ)|}, and B− and B+ where B− = −(1 + δ)B + δ log(3) and B+ =

(1 + δ)B + δ log(3). Thus, B− and B+ represent the smallest and largest possible expected

action-state values, respectively, in any equilibrium. In addition, for all v ∈ [B−, B+]18,

Φ(v; θ) ∈ [B−, B+]18 because the iterative expected utility of each action-state can be no

larger or smaller than B+ or B−, respectively, when the v ∈ [B−, B+]18. Thus, the continuous

function Φ maps a convex and compact set into itself, so Φ admits a fixed point, an equilibrium.
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Table 4: Structural Parameters and Values in the Example Equilibrium

Parameter xij · β(2) xij · β(3) zi · κ(2) zi · κ(3) γ(1) γ(2) γ(3) αi

Value 15 15 −16 −16 −5 5 7 −15

B Example Equilibrium

We consider a version of the game parameterized by the values in Table 4. We choose the

values for two reasons. First, they are similar in direction and magnitude to those we estimate

in the data. Second, under these values, a symmetric equilibrium exists, and we characterize a

symmetric equilibrium to simplify the exposition. As discussed in the paper, we still maintain

the normalization that xij · β(1) = 0 and zi · κ(1) = 0.

Given the values in Table 4, the second column in Table 5 reports a solution to the equation

Φ(v)− v = 0, where Φ is defined in Equation 6. When v takes on these (non-rounded) values,

the equilibrium constraints are satisfied below a tolerance of 1e−10, that is,

max
(i,ai,s)

{|Φij(ai, s; v)− vi(ai, s)|} < 1e−10.

Although we characterize an equilibrium for specific parameter values, the equilibrium dis-

cussed here will change in a continuous manner for sufficiently small perturbations of the

underlying parameters that enter the constraint equation, Φ(v) − v = 0, in a continuously

differentiable manner. To show this, we verify that the Jacobian of the constraint equation,

Φ(v)− v, has full rank at the equilibrium of interest.

The Table’s third column reports the corresponding choice probabilities. Using the equi-

librium choice probabilities and the per-period transition function st+1 = max{ati, atj}, we

construct the equilibrium transition matrix, Qv where the entry Qv[s, s′] denotes the proba-

bility that game transitions from s to state s′ given equilibrium v. Specifically, for any state

of hostilities s, we have

Qv[s, 1] = P (1, s; vi) · P (1, s; vj),

Qv[s, 2] = P (3, s; vi) + P (3, s; vj), and

Qv[s, 3] = 1−Qv[1, s]−Qv[3, s].
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Table 5: Equilibrium Expected Utilities and Choice Probabilities

(ai, s) vi(ai, s) P (ai, s; vi)

(1, 1) 20.30 0.88
(2, 1) 18.14 0.10
(3, 1) 16.12 0.01
(1, 2) 34.43 0.02
(2, 2) 38.37 0.84
(3, 2) 36.61 0.15
(1, 3) 36.03 0.80
(2, 3) 34.44 0.16
(3, 3) 33.31 0.04

In this example, the equilibrium transition matrix takes the following form:

Qv =

 0.78 0.19 0.03

0.00 0.73 0.27

0.63 0.28 0.09

 .
Notice these values are rounded to the second digit. Without rounding, Qv[2, 1] > 0.

An invariant or stationary distribution πv describes the distribution of states in the long

run, where πv(s) is the probability of observing state s from the path of play given equilibrium

v. Given the transition matrix Qv, π solves the equation

πvQv − πv = 0. (7)

Because P (ai, s; vi) > 0 for all actions ai and all states s, every state s′ can be reached from

any state s. Thus, the Markov chain described by transition matrix Qv is aperiodic, so a

unique invariant distribution exists. In this example, πv takes on the following values:

πv = (0.41, 0.44, 0.14).

With the invariant distribution in hand, we can compute the probability that i initiates a

dispute along the path of play given equilibrium v:

fi(v) = πv(1) · (1− P (1, 1; vi)) . (8)

In other words, i initiates a dispute when the current state is s and i plays a non-peaceful

action ai > 1. In our numerical example, fi(v) = 0.05.
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Effects on Conflict Initiation. We examine how i’s probability of initiating a conflict

changes as we make the country’s audience cost parameter more negative. To ease exposition,

we focus on country 1, while noting that the results are symmetric. Specifically, we compute

− ∂f1
∂α1

= −∂f1
∂v
· ∂v
∂α1

.

The gradient ∂v
∂α1

can be computed using the Implicit Function Theorem and the equilibrium

constraint Φ(v)− v = 0, where

∂v

∂α1

= − ∂Φ

∂α1

·
(
∂Φ

∂v
− I18

)−1
and Ik is the k × k identity matrix. Finally, the gradient ∂f1

∂v
can be computed using the

product rule, where ∂P (1,1;vi)
∂v

has a closed form solution and ∂πv(1)
∂v

can also be computed using

the Implicit Function Theorem and the equation πQv − π = 0 although we use numerical

derivatives here in our analysis. In the example under consideration, − ∂f1
∂α1

= 0.022. Using

linear interpolation, increasing the magnitude of country 1’s audience costs by 25% changes

1’s probability of initiating from 0.05 to 0.14. The direction of this effect generally matches

the equilibria estimated from the data and reported in Table 2.

Likewise, we can consider how country 2’s audience costs affect country 1’s initiation

probability, that is,

− ∂f1
∂α2

= −∂f1
∂v
· ∂v
∂α2

.

where we compute the component gradients as described above. In our equilibrium of interest,

− ∂f1
∂α2

= −0.023. Again, using linear interpolation, decreasing α2 to −16 from −15 suggests

that f1(v) drops to 0.03 from 0.05, and this effect matches the equilibrium effects found in

the data (see Table 2).

Competing Effects on Peace. On the one hand, larger audience costs (more negative) for

country i encourages the country to initiate conflict in the peace state, i.e., − ∂f1
∂α1

> 0. On the

other hand, if country i has enhanced audience costs, it’s rival is less like to initiate conflict.

What are the total effects of larger audience costs on peace? We compute ∂πv

∂αi
, and find

that −∂πv

∂αi
< 0, so increasing country i’s audience costs discourage peace in this equilibrium.

The effect is relatively small, however, where −∂πv

∂αi
= −0.009. Notice that audience costs

discouraging peace is an effect we do not generally see in the equilibria estimated in the data,
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i.e., those effects reported in Table 2.

Standing Firm in Crises. We examine as to whether larger audience costs increase or

decrease a country’s probability of standing firm in a crisis. Conditional on the path of play

beginning in state s = 2, i’s probability of maintaining or escalating the dispute is

gi(vi) = 1− P (1, 2; vi).

In our example equilibrium, i’s probability of maintaining or escalating the crisis is gi(vi) =

0.98. As above, we can compute the effects of larger (more negative) audience costs on this

probability for country 1. In our example, −∂gi(vi)
∂α1

= 0.012, demonstrating that larger audience

costs for country 1 encourage it to stand firm in crises. And similar results hold when looking

at the war state s = 3. When increasing country 2’s audience costs, country 1’s conditional

probability of maintaining or escalating the crisis also increases, where −∂gi(vi)
∂α1

= 0.004, but

the effect is substantially smaller.

Probability of Receiving Audience Costs. In an equilibrium v, country i’s long-term

probability of backing down and receiving an audience cost can be computed as

hi(v) = πv(2) · P (1, 2; vi) · (1− P (1, 2; vj)) + πv(3) · (1− P (3, 3; vi)) · P (3, 3; vj). (9)

In Equation 9, πv(2) denotes the probability that the equilibrium path of play is in the crisis

state, and P (1, 2; vi) · (1 − P (1, 2; vj)) is the probability that country i receives an audience

cost in the same state. Likewise, πv(3) denotes the probability that the path of play is in the

war state, and (1−P (3, 3; vi)) ·P (3, 3; vj) is the probability that country i receives an audience

cost war. In our example equilibrium, hi(v) = 0.01. In addition, larger audience costs (more

negative) for country i decreases this probability even further, that is, −∂hi(v)
∂αi

< 0, which

matches the effects from the estimated equilibria.

C Implementation

In this Appendix, we detail our implementation of the CMLE. Our data contains 125 countries

in 179 games, and solving the constrained optimization in Equation 4 requires estimating more

than 3, 347 parameters, where 3, 222 are expected utility constraints. The high-dimensionality

raises some questions about feasibility. To perform the optimization we use the program

IPOPT (Interior Point OPTimizer), which is an open-source, industrial optimizer used to
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solve problems with potentially hundreds of thousands of variables (Wächter and Biegler

2006). IPOPT is particularly well suited to the large problem here. In time trials, IPOPT

had better convergence and performance properties than other optimizers such as KNITRO

and a version of the Augmented Lagrangian Method. Throughout, we set our convergence

criterion to IPOPT’s default at 1e−6.

A general drawback of interior-point methods is that they require accurate representations

of the Hessian of the Lagrangian for the problem in Equation 4. In our experiments, numerical

approximations using finite differences substantially inflate the estimator’s variance. To work

around this, we compute the Hessian and all other derivatives using the program ADOL-C

which implements an algorithmic differentiation (AD) routine (Griewank, Juedes and Utke

1996). In our set-up, we supply only the log-likelihood and constraint function, and the

AD program produce the derivatives by repeatedly applying the chain rule to the supplied

functions. We implement the estimator using Python 2.7 on Xubuntu 14.04 using the pyipopt

software developed by Xu (2014) to call IPOPT within Python and the pyadolc package

developed by Walter (2014) to use the AD routines discussed above. Asymptotic standard

errors are estimated using Silvey (1959, Lemma 6, p. 401).

For comparison, we also simulate standard errors using a parametric bootstrap from Davi-

son and Hinkley (1997). Overall, the bootstrapped standard errors closely match the analytical

ones; however, countries involved in only one dyad with few (one or two) non-peaceful states

have, on average, larger bootstrapped standard errors, associated with their audience cost

parameter, than analytical ones. These countries, e.g., Ghana, comprise only 10% of those in

our sample.

D Monte Carlo Experiments

In this Appendix, we describe a Monte Carlo experiment in which we use simulated data to

evaluate the performance of the method and our implementation as a function of the number

of dyads and time periods. The results of this experiment are important for two reasons. They

demonstrate that firstly, the parameters of interest are identified, and secondly, the estimation

procedure accurately recovers the model’s parameters for numbers of dyads and time periods

that are similar to our dataset used in the study.

In this experiment, xsij = (1, x1ij) for all s and zi = (z1i ), where x1ij and z1i are random

variables. In addition, we vary the number of countries N to be values in {10, 20, 30} and T

to be values in {20, 80, 150, 250}. We consider every possible combination of countries, that
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Table 6: Coefficients used in the first Monte Carlo experiment analyzing the performance of
the CMLE as a function of N and T .

Coefficient β(2) β(3) κ(2) κ(3) γ(1) γ(2) γ(3) αi

Value (−1, 1) (−2, 2) −0.5 −1 −0.5 0 0.5 −2 + 2(i−1)
N−1

is, D = {{i, j} | i, j ∈ {1, ..., N}, i 6= j} and D =
(
N
2

)
. These values capture those in the

real-world application below in which T = 180 and D ≈
(
20
2

)
.

The experiment is conducted as follows. We fix the coefficients used throughout to those

in Table 6. For each fixed value of N and T , we first generate control variables x1ij ∼ N(0, 1)

and z1i ∼ U(0, 1). Then for each unordered dyad k, we compute an equilibrium vk by solving

the system of equations generated from Eq. 6. Next, we generate T periods of data using

the computed equilibrium, the associated conditional choice probabilities in Eq. 5, and the

transition skt+1 = max{akt
ik
, akt

jk
}. The initial state sk1 is drawn from {1, 2, 3} with equal

probability. After a suitable burn-in period, we combine the generated data and estimate the

parameters of the model by solving the constrained optimization problem in Eq. 4 using the

tools described in the previous section. The procedure is repeated 50 times for each value of

N and T .
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Table 7: Summary of Monte Carlo Experiment

N T β̂(2)1 β̂(2)2 β̂(3)1 β̂(3)2 κ̂(2)1 κ̂(3)1 γ̂(1) γ̂(2) γ̂(3)

10 20
-1.10
(0.24)

0.98
(0.15)

-2.02
(0.28)

2.02
(0.16)

-0.43
(0.20)

-1.02
(0.28)

-0.62
(0.46)

0.07
(0.32)

0.45
(0.19)

10 80
-1.05
(0.11)

1.00
(0.08)

-2.05
(0.11)

2.01
(0.08)

-0.45
(0.09)

-0.95
(0.12)

-0.45
(0.22)

0.02
(0.16)

0.48
(0.08)

10 150
-1.02
(0.10)

1.00
(0.06)

-2.00
(0.08)

2.02
(0.06)

-0.50
(0.06)

-1.01
(0.10)

-0.50
(0.19)

0.03
(0.11)

0.50
(0.07)

10 250
-1.01
(0.06)

0.99
(0.04)

-1.99
(0.08)

2.00
(0.04)

-0.50
(0.04)

-1.01
(0.07)

-0.57
(0.16)

0.03
(0.11)

0.49
(0.05)

20 20
-1.03
(0.13)

1.02
(0.09)

-1.98
(0.13)

2.01
(0.07)

-0.48
(0.11)

-1.02
(0.14)

-0.49
(0.29)

-0.01
(0.19)

0.49
(0.10)

20 80
-1.01
(0.06)

0.99
(0.03)

-2.00
(0.06)

1.99
(0.04)

-0.48
(0.04)

-0.99
(0.08)

-0.50
(0.09)

-0.02
(0.06)

0.49
(0.05)

20 150
-1.00
(0.04)

1.01
(0.02)

-2.00
(0.04)

2.01
(0.03)

-0.50
(0.03)

-1.00
(0.03)

-0.50
(0.08)

0.00
(0.04)

0.50
(0.03)

20 250
-1.00
(0.03)

1.00
(0.02)

-2.00
(0.03)

2.00
(0.03)

-0.50
(0.03)

-1.00
(0.04)

-0.50
(0.04)

0.00
(0.04)

0.50
(0.03)

30 20
-1.01
(0.08)

0.99
(0.05)

-2.01
(0.12)

1.99
(0.05)

-0.49
(0.08)

-0.97
(0.13)

-0.57
(0.12)

0.02
(0.10)

0.49
(0.07)

30 80
-1.00
(0.04)

1.00
(0.02)

-2.00
(0.04)

2.00
(0.02)

-0.50
(0.03)

-1.00
(0.04)

-0.50
(0.07)

0.01
(0.05)

0.50
(0.03)

30 150
-1.00
(0.02)

1.00
(0.02)

-1.99
(0.02)

2.00
(0.02)

-0.50
(0.02)

-1.01
(0.03)

-0.51
(0.05)

0.00
(0.05)

0.50
(0.02)

30 250
-1.00
(0.02)

1.00
(0.02)

-2.00
(0.03)

2.00
(0.01)

-0.50
(0.02)

-1.00
(0.03)

-0.51
(0.03)

0.00
(0.02)

0.50
(0.01)

Table 7 reports the means and standard errors in parentheses for the parameters β(s),

κ(ai), and γ(s). Due to space concerns, we do not report the audience cost parameters. In

addition, Figures 5 and 6 summarize the results. In these figures, we graph the CMLE’s bias

and variance, respectively, averaged over the four different sets of coefficients. More specif-

ically, to produce the upper-left graph of Figure 5, we first compute the expected bias of

β̂(s) for each s = 1, 2, and then we averaged these values for each specification of N and T .

The upper-left graph of Figure 6 averages the variance of β̂(s). The remaining graphs are

produced in a similar manner. Most importantly, the bias and the variance of the constrained

ML estimator decreases as we increase N and T . This monotonic relationship is especially
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Figure 5: The average bias of the constrained ML estimator by four different types of
coefficients as functions of the number of countries N and time periods T . In the analysis,
D =

(
N
2

)
. Note that the average bias over β is 1

4

∑3
s=2 |β(s)− E[β̂(s)]|1.
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Figure 6: The average variance of the constrained ML estimator by four different types of
coefficients. In the analysis, D =

(
N
2

)
.

pronounced with the estimator’s variance. Even though increasing N means estimating an

additional audience cost parameter and more equilibrium constraints, the additional informa-

tion still attenuates the estimator’s bias and variance. With a very small number of countries,

i.e. N = 10, increasing the number of time periods in the observation may increase the esti-

mator’s bias, especially concerning the action-specific cost parameters, κ(ai). However, with

a larger number of countries or dyads, this non-monotonicity disappears.

Finally, the experiment provides some quality control on our specific implementation.

When T = 20, the convergence rate of the procedure is approximately 50%. This is the same

across values of N and D. In contrast, when T > 20, the convergence rate is 100%, and this is

consistent across values of N and D. In addition, Figure 7 graphs the time until convergence.

There is exponential growth in computational time as we increase N or the number of ordered

dyads. (Recall that adding an unordered dyad means estimating an additional 18 auxiliary
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Figure 7: CPU time of the CMLE.

parameters.) Nonetheless, even with 435 dyads the average estimation time in Monte Carlos

is approximately three hours.

E Time-Invariant Covariates

Our model and subsequent estimation procedure do not allow for time-varying covariates.

More precisely, we have constructed utility functions that are dependent on the state of conflict

and actions taken, and we do not incorporate observed variables into the state space. Readers

may be concerned that the independent variables included in the model exhibit considerable

or even moderate fluctuations over time or that even smaller changes are correlated with

observed actions and states. Both of these concerns are unwarranted given our data, however.

Namely, we observe very few and very minimal changes in our independent variables, and the

changes that do exist are not correlated with the actions chosen and states of conflict.

First, we first examine whether our independent variables change over time. Our indepen-

dent variables come in two types, and the first type varies by country. These variables include

polity2, military personnel per capita, GDP per capita, CINC score and population. For each

variable, we compute its means in each country between 1993 and 2007, and then compute

country-year deviations from these mean values. The second type varies by dyad, and these

variables include trade dependence and whether the dyad has an alliance. We repeat the

same process for these variables except we use direct-dyads as observations. Figure 8 displays
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Figure 8: Country-Year Deviations from Mean Values of Independent Variables

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10

Deviation from Mean Polity2

D
en

si
ty

0
100
200
300
400
500

−0.02 0.00 0.02 0.04

Deviation from Mean CINC score

D
en

si
ty

0

100

200

300

400

−0.02 −0.01 0.00 0.01 0.02

Deviation from Mean Mil. Per. (pc)

D
en

si
ty

0.0

0.1

0.2

0.3

−60 −30 0 30

Deviation from Mean GDP (pc)

D
en

si
ty

0
1
2
3
4
5

−0.4 0.0 0.4

Deviation from Mean log Pop.

D
en

si
ty

0

25

50

75

100

−0.1 0.0 0.1 0.2

Deviation from Mean Trade Dep.

D
en

si
ty

0

2

4

6

8

−1.0 −0.5 0.0 0.5 1.0

Deviation from Mean Alliance

D
en

si
ty

histograms of these deviations for each variable and illustrates that observed deviations from

the mean are relatively small across our dataset.

Second, we then attempt to explain our independent variables using observed states and

actions in a panel data analysis. Specifically, we regress the country-specific variables on the

number of conflict states (st > 1) in which a country is involved in a given year, the number

of hostile actions a country takes in a given year (ati > 1), and the number of hostile actions

other countries take against it (aj > 1). We also include a lagged dependent variable, lags of

these observed actions and states, and country and year fixed effects. We repeated the same

process with trade-dependence and alliance presence for the directed dyads in our data except

we include dyad and year fixed effects.

Models 1-4 in Table 8 display regression results with country-year observations, and Models

13



5-6 displays a similar regressions with directed dyad-year observations.1 The main takeaway

should be and that observed actions and states have very little if any influence on our key

independent variables. Furthermore, the coefficients on the lagged values are close to 1, which

is to be expected if these variables do not change. While one out of the 30 coefficients of

interest are significant at the p < .1 level, this is not robust to various model and standard-

error specifications.

1The number of observations vary across models due to missing data in the dependent variable. This is
not a problem in the main analysis because we average across years 1993-2007.
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Table 8: Predictors of Independent Variables

Polity2 CINC Mil. Per. (pc) GDP (pc) Log Pop. Trade Dep. Ally
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Dep. Var., lag 0.71∗∗∗ 0.97∗∗∗ 0.74∗∗∗ 0.91∗∗∗ 0.90∗∗∗ 0.92∗∗∗ 0.80∗∗∗

(0.03) (0.05) (0.04) (0.02) (0.02) (0.08) (0.02)
Confl. states 0.09 0.00 0.00 −0.04 0.00 0.00 −0.01

(0.08) (0.00) (0.00) (0.04) (0.00) (0.00) (0.01)
Confl. states, lag −0.01 0.00 0.00 −0.04 0.00 0.00 0.00

(0.07) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00)
Conf. Acts against 0.00 0.00 0.00 0.03† 0.00† 0.00 0.01

(0.02) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)
Conf. Acts against, lag −0.01 0.00 0.00 0.02 0.00 0.00 0.00

(0.03) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)
Conf. Acts taken −0.04 0.00 0.00 0.00 0.00 0.00 0.01

(0.03) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)
Conf. Acts taken, lag −0.02 0.00 0.00 0.00 0.00 0.00 0.00

(0.02) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)
N 1736 1750 1750 1730 1750 5004 5012

Notes: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; †p < 0.1

Clustered Standard Errors in Parenthesis
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Summary statistics of the variables used in the analysis are found in Table 9.

Table 9: Summary of main variables

Min Mean Median St. Dev. Max

Directed Dyadic Variables Xij

min(Polity 2) -10.00 -1.03 -1.38 5.30 10.00
log(Cap. Ratio) -7.49 0.00 0.00 2.39 7.49

sqrt Trade Depend. 0.00 0.07 0.04 0.07 0.46
Alliance 0.00 0.31 0.00 0.46 1.00

log(distance) 1.61 6.65 6.53 1.19 9.23

Country Specific Variables Zi

log(GDP pc +1) 0.14 2.00 1.71 1.21 4.74
log(Mil. Per. pc +1) 0.00 0.01 0.00 0.01 0.05

log(Pop.) 6.11 9.45 9.29 1.47 14.05

F Audience Cost Parameters

This section contains the point estimates on the 125 audience cost parameters we estimated.

Table 10: Audience Cost Estimates

Country Audience Cost St. Err. p

Nepal -0.87 7.61 0.91

Bangladesh -1.86 1.12 0.10

Nigeria -2.18 2.15 0.31

Cambodia -2.32 6.53 0.72

Lebanon -2.43 0.77 < 0.01

Benin -2.46 8.80 0.78

Azerbaijan -2.64 0.93 < 0.01

Armenia -2.90 0.93 < 0.01

Pakistan -3.61 0.90 < 0.01

India -3.80 0.89 < 0.01

Cameroon -4.03 2.36 0.09

Djibouti -4.52 10.85 0.68

Saudi Arabia -4.75 2.01 0.02
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Syria -5.04 4.65 0.28

Myanmar (Burma) -5.17 2.17 0.02

Yemen -5.25 1.95 < 0.01

Iraq -5.62 0.91 < 0.01

Afghanistan -7.91 1.85 < 0.01

Albania -8.95 0.87 < 0.01

Greece -9.22 0.82 < 0.01

Eritrea -9.37 5.61 0.09

Turkey -9.43 0.77 < 0.01

Korea North -9.54 0.95 < 0.01

Thailand -9.59 2.38 < 0.01

Korea South -9.74 1.07 < 0.01

Bosnia -10.04 2.32 < 0.01

Vietnam -10.61 5.32 0.05

Georgia -10.90 3.23 < 0.01

Israel -11.09 1.71 < 0.01

Japan -11.33 2.30 < 0.01

Bulgaria -11.42 5.56 0.04

Latvia -11.72 4.20 < 0.01

Qatar -11.97 6.62 0.07

Poland -12.04 3.61 < 0.01

Jordan -12.08 5.15 0.02

Yugoslavia -12.83 1.10 < 0.01

Congo Kinshasa -13.37 1.99 < 0.01

Croatia -13.39 1.90 < 0.01

Chile -13.52 4.88 < 0.01

South Africa -13.59 17.62 0.44

Romania -14.08 3.49 < 0.01

Tajikistan -14.24 4.85 < 0.01

Iran -14.26 2.38 < 0.01

Ukraine -14.29 2.20 < 0.01

Uganda -14.50 2.07 < 0.01

Zimbabwe -14.60 5.95 0.01

Kuwait -14.62 2.52 < 0.01

Sudan -14.75 1.85 < 0.01
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Mozambique -14.79 9.15 0.11

Cuba -14.80 6.62 0.03

Lithuania -14.88 3.90 < 0.01

Ethiopia -14.90 2.00 < 0.01

Malaysia -14.99 1.78 < 0.01

Uzbekistan -15.07 4.17 < 0.01

Morocco -15.14 5.36 < 0.01

Moldova -15.15 1.72 < 0.01

Central African Republic -15.17 3.07 < 0.01

Chad -15.26 2.30 < 0.01

China -15.29 1.88 < 0.01

Kenya -15.40 3.31 < 0.01

Australia -15.41 5.01 < 0.01

Germany -15.58 1.82 < 0.01

Namibia -15.73 17.58 0.37

Mongolia -15.79 2.36 < 0.01

Egypt -15.79 2.85 < 0.01

Venezuela -15.80 1.68 < 0.01

Burundi -16.10 3.28 < 0.01

Mauritania -16.12 5.73 < 0.01

Singapore -16.20 3.96 < 0.01

Russia -16.22 1.10 < 0.01

Belgium -16.29 3.95 < 0.01

United Kingdom -16.30 1.95 < 0.01

El Salvador -16.33 2.99 < 0.01

Guyana -16.35 4.29 < 0.01

Papua New Guinea -16.42 2.24 < 0.01

Portugal -16.43 4.13 < 0.01

Zambia -16.45 2.66 < 0.01

Indonesia -16.46 1.49 < 0.01

Netherlands -16.47 3.80 < 0.01

Slovenia -16.48 2.43 < 0.01

Nicaragua -16.55 2.30 < 0.01

Canada -16.76 2.81 < 0.01

Bhutan -16.89 4.10 < 0.01
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United States -16.92 1.12 < 0.01

Philippines -17.00 3.26 < 0.01

Angola -17.07 2.35 < 0.01

Kyrgyzstan -17.13 3.86 < 0.01

Haiti -17.22 2.83 < 0.01

Spain -17.23 3.56 < 0.01

Hungary -17.23 2.12 < 0.01

Liberia -17.27 1.62 < 0.01

Costa Rica -17.55 3.98 < 0.01

Libya -17.58 3.02 < 0.01

Botswana -17.69 12.60 0.16

Belarus -17.81 3.42 < 0.01

Tanzania -17.81 1.84 < 0.01

Rwanda -17.89 2.46 < 0.01

France -17.92 1.06 < 0.01

Algeria -17.94 2.36 < 0.01

Italy -18.15 2.04 < 0.01

Sierra Leone -18.18 1.48 < 0.01

Ghana -18.31 13.35 0.17

Gambia -18.47 4.56 < 0.01

Congo Brazzaville -18.52 3.31 < 0.01

Argentina -18.54 1.57 < 0.01

Mali -18.63 1.91 < 0.01

Togo -18.66 9.01 0.04

Niger -18.71 2.13 < 0.01

Denmark -18.75 3.22 < 0.01

Turkmenistan -18.84 4.00 < 0.01

Swaziland -18.99 3.76 < 0.01

Ivory Coast -19.28 1.38 < 0.01

Peru -19.34 4.44 < 0.01

Lesotho -19.41 16.71 0.25

Ecuador -19.42 2.85 < 0.01

Brazil -19.43 3.01 < 0.01

Guinea -19.69 1.32 < 0.01

Colombia -19.88 3.08 < 0.01
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Somalia -19.91 6.04 < 0.01

Senegal -19.92 1.52 < 0.01

Honduras -19.94 2.17 < 0.01

Suriname -20.22 3.39 < 0.01

Norway -21.47 1.34 < 0.01

Dominican Rep -22.34 2.37 < 0.01

Cyprus -33.87 3.02 < 0.01

G Audience Costs in Autocratic Regimes

Table 11 reports the estimates from two regressions where we regress our audience cost esti-

mates the on regime types from Weeks (2008) and Weeks (2012), respectively.

H Substantive Effects

In this Appendix, we detail how to compute substantive effects in the model using a simple

homotopy predictor-corrector method. We use this method to examine the effect of changing

the parameters from θ̂, which are estimated when solving Eq. 4, to θ̃, which are chosen by the

researcher, on the estimated equilibria v̂. Appendix B discusses how to use marginal effects,

or instantaneous effects, for comparative statics, but in this section, we examine how equilibria

change when we move or vary the data or parameters by substantial degrees.

Because there are multiple equilibria, we cannot just vary the parameters, compute a new

equilibrium, and compare choice probabilities under the old and new parameters values. Doing

so would not guarantee that the new equilibrium bears any resemblance to the estimated one.

For example, it is possible to uncover drastic differences in choice probabilities when selecting

among different equilibria although the data may not change. Likewise, we do not consider

substantive effects in an average dyad because there is no information on what equilibrium

such a dyad would play. To alleviate these concerns, we focus on two substantively interesting

dyads, Lebanon-Israel and North-South Korea, and implement a method from Aguirregabiria

(2012) that maps equilibria as functions of data or parameters.

The method proceeds as follows. First, define the vectors of data xk and zk as (xikjk , xjkik)

and (zik , zjk), respectively. Then, comparative statics refer to how the equilibrium vk changes

as we vary the parameters and data from (θ, xk, zk) to (θ̃, x̃k, z̃k). For example, how would
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Table 11: Regime classification and audience costs

WLS: Audience Costs
Weeks (2008) Weeks (2012)

Personalist 4.89∗∗

(1.67)
Single-party −1.11

(2.28)
Military 2.39

(3.97)
Machine −1.43

(1.63)
Junta 1.93

(2.11)
Boss 3.94∗

(1.58)
Strongman 1.15

(2.00)
Other non-democracy 1.69 2.13∗

(1.10) (1.01)
Population 0.34 0.36

(0.36) (0.28)
Constant −18.35∗∗ −18.32∗∗

(3.80) (2.85)

R2 0.10 0.09
N 89 125

Notes: ∗∗p < 0.01; ∗p < 0.05

Standard errors in parenthesis. Observations are weighted by the number

of dyads in which each country appears.

the equilibrium, and potentially the probability of war, between Russia and the United States

change if Russia were to become a democracy holding all other variables constant and given

our estimate θ? Likewise, how would the equilibrium between Lebanon and Israel change if we

were to increase Lebanon’s audience cost parameter? When the Jacobian of Φk(·; θ | xk, zk)
(with respect to vk) is not vanishing at equilibrium vk, then small changes in the data and

parameters result in small changes to the equilibrium by the implicit function theorem. This

condition can be verified at the estimated parameters and equilibria. Nonetheless, we also

need a behavioral assumption: If we vary the data continuously, countries play the equilibrium

corresponding to the smooth change in the original equilibrium.

Unfortunately, even with this assumption, we cannot simply solve the system of equations
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Φk(vk; θ̃|x̃k, z̃k)−vk = 0 for ṽk because multiple equilibria potentially exist, and it is therefore

possible to not even change the data but uncover a very drastic change in behavior by selecting

among different equilibria. To alleviate this problem, we implement a homotopy method

proposed in Aguirregabiria (2012) to trace equilibria from vk to ṽk. More specifically, for

small changes in the parameter vector and the data, we first approximate changes in vk using

the implicit function theorem and linear approximation as in Aguirregabiria (2012). Next,

we use these approximations as starting values in a Newton or quasi-Newton method that

computes new equilibria resulting from the small changes in the data. Finally, we repeat this

procedure until reaching the final vector of data. A minor difference between this routine

and the specifics discussed in Aguirregabiria (2012) is that ours requires the computation of

equilibria at each step. While this does increase the computational burden of the procedure,

it is feasible given our small state space and will return an equilibrium upon convergence.

Algorithm 1: Comparative Statics (CS) using a homotopy

Input: A coefficient vector θ, control variables for dyad k xk and zk, an equilibrium
vk, i.e., Φk(vk | U(θ, xk, zk)) = vk, new values for the parameter vector θ̃ and
control variables x̃k and z̃k, and a tuning parameter n ∈ N. To pass to the
Broyden solver, a convergence criterion ε > 0, and a number of maximum
iterations m ∈ N.

Output: An equilibrium ṽk under new parameters θ̃ and data x̃k and z̃k.
1 Uold ← U(θ, xk, zk)
2 ṽk ← vk

3 for i← 1 to n do
4 λ← i

n

5 Unew ← (1− λ)U(θ, xk, zk) + λU(θ̃, x̃k, z̃k)

6 slope← −
(
DUΦk(ṽk | Uold)

)′ (
DṽkΦk(ṽk | Uold)

)−1
7 start← ṽk + [Unew − Uold] slope
8 (ṽk, success)← Broyden(start,Φk(v | Unew)− v, ε,m)
9 if success then

10 Uold ← Unew

11 else
12 ṽk ← “Warning: Convergence Problems.”
13 break

14 return ṽk

Algorithm 1 presents the specifics of the procedure for reference and is an implementation

of predictor-corrector method. Let U(θ, xk, zk) denote the vector of actor-state-action-profile

utilities given a parameter vector θ and data xk and zk. Likewise, let Φk(v | U) denote the
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equilibrium conditions from Eq. 6 with utilities U . In line 6, we must compute DUΦ and DvΦ.

These can be computed using automatic differentiation or are relatively straightforward to due

by hand. In line 7, we use linear interpolation to predict how the equilibrium changes. In

line 8, we call a Broyden solver, which returns a pair consisting of a solution and an indicator

of a successful convergence. In our experiments, we save the Broyden call in each iteration

to produce a continuous representation of the equilibrium, which we use to graphically verify

that the output has indeed continuously traced the equilibrium.

I Additional Results Robustness Checks

Table 12 reports the coefficient estimates associated with the independent variables that de-

termine a country’s state- and action-specific payoffs. Notice that the table does not report

five models, but rather reports the output from one model across five columns. The first two

columns describes the estimates concerning state-specific payoffs that country i gets from its

current state of affairs with country j. As with the standard multinomial logit, these estimates

are interpreted as the relative increase or decrease in utility compared to being in the peaceful

state. Columns three and four show our estimates of the country-specific costs to country i

from taking action ai. The last column contains the estimates of the structural parameters

γ(s) which describe whether conflict deters or spirals in state s.

We report the results of several robustness checks. The first robustness check restricts the

125 audience cost parameters to a single estimated value, these results are reported in Table

13. As we can see the results are largely unchanged from the main model.

In Table 14 we add a dummy that records if the pairs of countries have a formal alliance

in more than half of the time periods in our data. The results roughly match the results from

the main part of the paper, the only noticeable differences are the dyadic variable in crisis. In

this model we see that the democratic peace appears to turn up in both crisis and war and

allies prefer to be in peace.

The next check is in Table 15, and it uses our original variables plus a control for distance.

Distance is measured as the logged distance between each country’s capital. We find no real

effect of distance, but the rest of the results match the previous model.

The next model, Table 16, includes all of our original variables plus both alliance and

distance. As before we find no real effect of distance, but we do find the intuitive result that

allies prefer peace to both crisis and war. In this, and the last two models the liberal peace

of trade and democracy are definitely present in the war state, but there is some indication
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Table 12: Structural estimates, omitting αi.

β(Crisis) β(War) κ(Crisis) κ(War) γ

Joint Democracy 0.00 −0.03∗

(0.01) (0.01)
Cap. Ratio 0.00 −0.05∗

(0.02) (0.02)
Trade Depend. 0.19 −3.06∗

(0.49) (0.79)
GDP pc 0.13∗ −0.15∗

(0.03) (0.03)
Mil. Per. pc 7.54 −8.15

(4.39) (5.15)
γ(Peace) −48.24∗

(2.65)
γ(Crisis) 9.32∗

(0.60)
γ(War) 13.84∗

(0.59)
Constant 19.23∗ 19.08∗ −21.18∗ −20.96∗

(1.10) (1.40) (1.02) (1.27)

Log L -45.50
Dyads 179

Notes:∗p < 0.05; Standard errors in parenthesis
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Table 13: Structural estimates, single α model.

β(Crisis) β(Conflict) κ(Crisis) κ(Conflict) γ

Joint Democracy 0.01∗ −0.03∗∗

(0.00) (0.01)
Cap. Ratio 0.03∗∗ −0.02∗∗

(0.01) (0.01)
Trade Depend. −0.19 0.10

(0.17) (0.10)
GDP pc 0.01 −0.01

(0.01) (0.00)
Mil. Per. pc 0.47 −0.26

(1.09) (0.72)
γ(Peace) −33.96∗∗

(2.87)
γ(Crisis) 7.64∗∗

(0.65)
γ(Conflict) 10.72∗∗

(0.99)
Constant 8.17∗∗ 8.48∗∗ −10.87∗∗ −12.42∗∗

(1.09) (2.14) (1.00) (2.18)

Log L -48.92
Dyads 179

Notes: ∗∗p < 0.01; ∗p < 0.05; †p < 0.1

Standard errors in parenthesis

from these first three models that this effect keeps democracies and trading partners out of

crisis as well.

The fourth check, shown in Table 17, looks similar to the last few. We continue to add the

dyadic variables of distance and alliance, but now we have removed all the country specific

cost variables except for the constants. These results largely match the last few tables.

Our final robustness check is in Table 18. It is the fullest model we consider as it includes

all the dyadic variable mentioned thus far, the same cost variables from the original model,

plus an additional cost variable that is logged population. These results look the most similar

to our original regression results in the main text. Note that the effect of democracy on

preferring crisis to peace is now statistically significant, but the sign is now positive. This is

additional evidence for our conjecture above that there may not be a real pacifying effect of

democracies when it comes to crisis level interaction. The only major change that appears

in this model is that γ(Peace) is now positive, however, this result shows up in none of the
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Table 14: Adding alliance, still omitting αi.

β(Crisis) β(Conflict) κ(Crisis) κ(Conflict) γ

Joint Democracy −0.02∗∗ −0.05∗∗

(0.01) (0.01)
Cap. Ratio 0.04∗ −0.09∗∗

(0.02) (0.02)
Trade Depend. −1.01 −6.12∗∗

(0.65) (0.81)
Alliance −0.11† −0.33∗∗

(0.06) (0.11)
GDP pc 0.09∗∗ −0.13∗∗

(0.02) (0.03)
Mil. Per. pc 3.75 −4.39

(3.91) (4.66)
γ(Peace) −39.14∗∗

(2.38)
γ(Crisis) 11.07∗∗

(0.62)
γ(Conflict) 15.18∗∗

(0.61)
Constant 19.11∗∗ 18.28∗∗ −21.22∗∗ −20.37∗∗

(1.00) (1.20) (0.92) (1.10)

Log L -46.12
Dyads 179

Notes: ∗∗p < 0.01; ∗p < 0.05; †p < 0.1

Standard errors in parenthesis

other models.

In order to compare the 125 αi parameters across the original model and the 5 robust-

ness checks we conduct some simple correlation analysis. When we compare the pair-wise

correlations across the 6 models, the median correlation is about 0.37 a reasonable but not

phenomenally high correlation. On examination we noticed that the audience costs from

the largest model, the one in Table 18, appear to exhibit some major separation. When we

drop that model from the audience costs analysis we find that the parameters have a median

correlation across models of about 0.82. This is a much stronger relationship that gives us

confidence that the model parameters exhibit only mild change across specification.
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Table 15: Adding distance, still omitting αi.

β(Crisis) β(Conflict) κ(Crisis) κ(Conflict) γ

Joint Democracy −0.01∗ −0.03∗∗

(0.01) (0.01)
Cap. Ratio 0.01 −0.10∗∗

(0.02) (0.02)
Trade Depend. −2.26∗∗ −6.74∗∗

(0.64) (0.84)
Distance −0.02 0.05

(0.03) (0.04)
GDP pc 0.10∗∗ −0.15∗∗

(0.03) (0.04)
Mil. Per. pc 3.85 −6.98

(4.06) (5.84)
γ(Peace) −42.39∗∗

(2.45)
γ(Crisis) 11.22∗∗

(0.63)
γ(Conflict) 14.75∗∗

(0.60)
Constant 19.05∗∗ 16.54∗∗ −20.98∗∗ −19.07∗∗

(1.05) (1.28) (0.94) (1.14)

Log L -46.18
dyads 179

Notes: ∗∗p < 0.01; ∗p < 0.05; †p < 0.1

Standard errors in parenthesis

J Additional Substantive Effects

In this section, we use the estimated coefficients and equilibria to conduct counterfactual

experiments on the remaining parameters. Throughout this section, we expand our focus to

include four theoretically interesting dyads: the United States and Iran, Cyprus and Turkey,

Lebanon and Israel, and North and South Korea. These experiments are similar to our

analysis of audience costs. In the first three experiments, we vary the dyad-specific variables

xij to x̃ij, trace the equilibrium (as before), and compute the new invariant distribution. In

Experiment 1, we increase every country’s trade dependence by one-half a standard deviation.

In Experiment 2, we increase the dyad’s minimum polity score to 10. In Experiment 3, we

set the capability ratio of the dyad to 1. We choose these values because they ensure that the

equilibria do not vanish as we change the stage utility function and they are consistent with
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Table 16: Structural estimates, restricted κ, still omitting αi.

β(Crisis) β(Conflict) κ(Crisis) κ(Conflict) γ

Joint Democracy −0.01∗ −0.05∗∗

(0.01) (0.01)
Cap. Ratio 0.07∗∗ −0.10∗∗

(0.02) (0.02)
Trade Depend. −0.66 −5.93∗∗

(0.64) (0.85)
Alliance −0.22∗∗ −0.41∗∗

(0.08) (0.12)
Distance 0.01 −0.04

(0.02) (0.04)
γ(Peace) −37.63∗∗

(2.26)
γ(Crisis) 11.10∗∗

(0.61)
γ(Conflict) 15.46∗∗

(0.61)
Constant 19.14∗∗ 18.87∗∗ −21.03∗∗ −20.98∗∗

(0.99) (1.22) (0.90) (1.08)

Log L -46.27
Dyads 179

Notes: ∗∗p < 0.01; ∗p < 0.05; †p < 0.1

Standard errors in parenthesis

the domain of the independent variables.

Table 19 reports the results from the first class of the experiments. In the far-right columns

we report the old and new invariant distributions, respectively. Here we see that increasing

Lebanon and Israel’s trade dependence by one-half of a standard deviation leads to an ap-

proximate 10% increase in the probability of peace. Given the small change made to trade

dependence this effect is quite large especially in light of substantive effects described in other

conflict work. In contrast, a similar change to the dyad including North and South Korea leads

to a 2.5% decrease in the probability of peace. Likewise, increasing the minimum democracy

score in the Lebanon–Israel dyad increases peace by more than 10%, but a similar change with

North and South Korea decreases the probability of peace by 6% although the latter change

is not statistically significant. To better illustrate the effect of minimum democracy in the

Israel-Lebanon dyad, Figure 9 graphs the probability of peace and war as we vary the dyad’s
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Table 17: Structural estimates adding distance and alliance, still omitting αi.

β(Crisis) β(Conflict) κ(Crisis) κ(Conflict) γ

Joint Democracy −0.02∗∗ −0.05∗∗

(0.01) (0.01)
Cap. Ratio 0.04∗ −0.10∗∗

(0.02) (0.02)
Trade Depend. −0.84 −6.10∗∗

(0.65) (0.82)
Alliance −0.14∗ −0.35∗∗

(0.07) (0.11)
Distance −0.02 −0.02

(0.03) (0.04)
GDP pc 0.10∗∗ −0.13∗∗

(0.03) (0.04)
Mil. Per. pc 2.85 −4.75

(3.93) (4.69)
γ(Peace) −38.66∗∗

(2.40)
γ(Crisis) 11.12∗∗

(0.62)
γ(Conflict) 15.29∗∗

(0.61)
Constant 19.40∗∗ 18.58∗∗ −21.35∗∗ −20.55∗∗

(1.02) (1.23) (0.92) (1.09)

Log L -46.11
Dyads 179

Notes: ∗∗p < 0.01; ∗p < 0.05; †p < 0.1

Standard errors in parenthesis

minimum polity score from the smallest to the largest possible values.2 As minimum polity

varies from –10 to 10, the probability of peace increases from 50% to 80%, approximately, and

the probability of war decreases from 45% to 25%, approximately. In contrast, there are no

such noticeable changes in any dyad when looking at the ratio of military capabilities.

In our final experiment, we reduce the degree to which conflict is mutually reinforcing in

the crisis and war states by decreasing both γ(2) and γ(3) by 1.0. Such a situation reflects

an increase in the mutual destructiveness of war which can theoretically be imposed by an

international organization. The procedure for this experiment is exactly the same as our

2Of the four dyads considered, this is the only one that allows such large reductions in the polity score
before the estimated equilibrium vanishes.
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Table 18: Structural estimates including distance, alliance, and population, still omitting αi.

β(Crisis) β(Conflict) κ(Crisis) κ(Conflict) γ

Joint Democracy 0.04∗∗ −0.08∗∗

(0.01) (0.01)
Cap. Ratio −0.12∗∗ −0.01

(0.03) (0.04)
Trade Depend. −2.68∗∗ −5.06∗∗

(0.83) (0.91)
Alliance 0.02 0.93∗∗

(0.10) (0.14)
Distance −0.31∗∗ −0.11

(0.04) (0.07)
GDP pc 0.21∗∗ −0.11∗

(0.03) (0.05)
Mil. Per. pc 31.76∗∗ 28.85∗∗

(4.21) (5.08)
Population 0.27∗∗ 0.07

(0.03) (0.05)
γ(Peace) 21.74∗∗

(0.95)
γ(Crisis) 3.96∗∗

(0.17)
γ(Conflict) 13.35∗∗

(0.52)
Constant 10.34∗∗ 23.11∗∗ −14.76∗∗ −26.25∗∗

(0.60) (1.24) (0.65) (1.20)

Log L -45.68
Dyads 179

Notes: ∗∗p < 0.01; ∗p < 0.05; †p < 0.1

Standard errors in parenthesis

audience cost experiment, and the results are found in Table 20.3

In Experiment 4, decreasing the destructiveness of mutual conflict leads to a 10% increase

in the amount of time spent in peace in the Korean dyad. This makes sense because in this

experiment we have decreased the mutual profit to be gained from continuing to a fight. In

contrast, we observe that despite making mutual continuance of conflict less profitable, the

probability of peace between Cyprus and Turkey decreases by about 12%. This can occur

because as we make mutual conflict more destructive, one country begins to attack less which

3In Experiment 4, we could not continuously trace the equilibrium between Lebanon and Israel.
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Table 19: Counterfactual Experiments: Dyadic Variables

Dyad Invariant Dist.
In Data

Invariant Dist.
Counterfactual

United States and Iran (94.75, 3.81, 1.44) (95.14, 3.77, 1.09)
Experiment 1 Cyprus and Turkey (88.69, 9.19, 2.12) (86.80, 10.78, 2.41)
(Trade) Lebanon and Israel (54.86, 6.44, 38.71) (64.78, 4.91, 30.31)∗

North and South Korea (86.08, 9.33, 4.59) (83.79, 12.14, 4.07)

United States and Iran (94.75, 3.81, 1.44) (95.66, 3.41, 0.94)
Experiment 2 Cyprus and Turkey (88.69, 9.19, 2.12) (87.88, 9.84, 2.27)
(Democracy) Lebanon and Israel (54.86, 6.44, 38.71) (66.45, 4.90, 28.65)∗∗

North and South Korea (86.08, 9.33, 4.59) (80.89, 13.34, 5.77)

United States and Iran (94.75, 3.81, 1.44) (94.60, 3.83, 1.57)
Experiment 3 Cyprus and Turkey (88.69, 9.19, 2.12) (87.21, 10.23, 2.57)
(Capability Ratio) Lebanon and Israel (54.86, 6.44, 38.71) (55.59, 6.05, 38.35)

North and South Korea (86.08, 9.33, 4.59) (86.08, 9.33, 4.59)

Notes: ∗∗p < 0.01; ∗p < 0.05; †p < 0.1

Table 20: Counterfactual Experiments: γ

Dyad Invariant Dist.
In Data

Invariant Dist.
Counterfactual

United States and Iran (94.75, 3.81, 1.44) (94.89, 3.71, 1.40)
Experiment 4 Cyprus and Turkey (88.69, 9.19, 2.12) (76.31, 17.66, 6.03)∗∗

γ(s) Lebanon and Israel (54.86, 6.44, 38.71) NA
North and South Korea (86.08, 9.33, 4.59) (88.31, 3.67, 8.02)∗∗

Notes: ∗∗p < 0.01; ∗p < 0.05; †p < 0.1

means the other can attack with more impunity. Such a comparative static is common in

games of chicken when one player finds standing firm less and less attractive.

K Model Fit

This Appendix contains several model fit exercises. First, we examine aggregate predictions

using our estimated equilibria. Aggregating across all dyads, our model predicts 93.9% of

states should be peace and 2.86% of states should be crisis.4 This compares to rates of 95.4%

and 2.52% observed in the data, respectively. Likewise, Table 21 illustrates our predictions

concerning the nine different transitions and should be compared to Table 1, which reports

4These are computed by averaging the equilibrium invariant distributions across dyads.
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Figure 9: The effect of minimum democracy.
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transitions observed in the data. Again, the model’s predictions match the data. A notable

exception occurs in the war state, where the model over predicts the percent of war transitions

conditional on the dyads being in war by 8% and under predicts the percent of war-to-crisis

transitions by 6%. Nonetheless, the model’s predictions essentially mimics their real-world

counterparts.

Next, we examine the degree to which our estimated equilibria fit the data within each

dyad, and we use two non-strategic models as our benchmarks. Although our structural model

is relatively parsimonious, the results suggest that it not only fits the data quite well but also

fits the data at least as well if not better than the more standard models.

For the non-strategic models, we use multinomial logits to estimate the probability that

a country ik chooses action ai in dyad k and include observed covariates xikjk , zik , and zjk

as predictors, where an observation is the ordered-dyad month. The first logit does not

condition this probability on the observed state, but the second one adds this flexibility.

Similar approaches are the standard in MIDs analyses (Buhaug and Gleditsch 2008; Huth and

Allee 2002; Reiter and Stam 2003). To determine the degree to which these models fit the

data, we use several power divergence statistics, which include a χ2 statistic and a likelihood

ratio or G2 statistic. In addition, we follow the recommendation of Read and Cressie (1988)

and include divergence statistics with parameter λ = 2
3

and λ = 5. The former is robust across

several types of null models, and the latter is particularly suited for ones that overwhelmingly

predict a single category, for example, peace in our application.

Table 22 presents the results across the three different models (rows) on three types of

observations (columns). In columns 3–5, the corresponding cells report the percent of dyads
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Table 21: Predicted aggregate transitions.

Transition Predicted transitions Predicted within state

Peace → Peace 90.1% 95.9%
Peace → Crisis 2.27% 2.42%
Peace → War 1.54% 1.64%

Crisis → Peace 2.12% 74.2%
Crisis → Crisis 0.45% 15.7%
Crisis → War 0.29% 10.1%

War → Peace 1.69% 51.6%
War → Crisis 0.14% 4.29%
War → War 1.44% 44.1%

Caption: The middle column displays the probability distribution over expected transitions and the
far-right column presents the conditional distribution in each state, both of which are computed from
equilibrium estimates v̂. This table matches Table 1, which records the percent of transitions observed in
the data.
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Table 22: Divergence statistics and comparison to non-strategic models

Observed states Conditional transitions Transition matrix
p < .1 p < .05 p < .01 p < .1 p < .05 p < .01 p < .1 p < .05 p < .01

Estimated
equilibria

χ2 46.93 28.49 19.55 23.85 18.35 12.39 25.70 20.67 18.99
G2 72.63 63.69 34.08 37.61 30.05 11.47 39.11 24.58 15.64

λ=2
3

59.78 39.11 18.99 29.13 18.58 11.70 24.02 22.91 17.32
λ=5 22.91 19.55 17.32 24.31 22.94 21.56 32.40 31.84 30.73

Multinomial
model

χ2 78.21 55.87 27.93 51.83 40.60 24.31 49.72 42.46 34.64
G2 87.15 83.24 65.92 50.00 45.41 34.63 81.56 71.51 41.34

λ=2
3

82.12 70.39 31.84 52.06 42.20 24.77 56.98 44.69 34.64
λ=5 31.28 26.26 22.35 33.94 31.42 29.13 41.34 40.22 38.55

Multinomial
cond. on
state

χ2 85.47 76.54 41.34 21.10 16.06 9.40 30.73 23.46 15.64
G2 91.06 87.71 75.42 37.84 28.67 11.47 49.16 31.28 17.32

λ=2
3

88.27 79.89 49.16 26.15 16.97 9.17 31.28 22.35 15.08
λ=5 38.55 29.61 22.35 27.75 24.54 22.02 38.55 37.43 34.64

Caption: The results of four power divergence tests for three different models, which include the estimated equilibria (rows 1–4), a multinomial
logit predicting whether an ordered-dyad engages in peace, crisis and war (rows 5–8), and a similar multinomial logit conditioning on the observed
state (rows 9–12). Numbers in cells correspond to percent of observations in which we reject the null that the respective model generates the
observed distribution of states (columns 3–5), distribution of transitions conditional on state (columns 6–8), and transition matrix (columns 9–11).
Smaller numbers indicate better fit.

34



in which we reject the null hypothesis that the model’s invariant distribution generates the

observed states for three standard p-vales. Essentially, this is a joint hypothesis test where

we reject the null if the equilibrium does not generate the states or the path of play has not

converged to its invariant distribution.5 Thus, smaller numbers indicate better fit, and the

tests suggest that the equilibria explain 70%–80% of dyads quite well, which is better than

both multinomial models. Furthermore, this suggests that the data generating process has

converged to its stationary distribution. Upon further inspection, there does not appear to

be an obvious pattern as to why our model performs poorly on certain dyads. For example,

the model predicts 99 peaceful states in the Lebanon-Israel dyad, but the data contain 52.

In other words, we over predict peace. In contrast, the model under predicts peace in the

India-Pakistan dyad, with 65 peaceful states predicted compared to 110 in the data.

In columns 6–8, we examine the degree to which expected transitions match the distribu-

tion of observed transitions within each dyad and state. Here, the cells report the percentage

of dyad-state pairs in which we reject the null hypothesis that the model under considera-

tion generates the observed transitions.6 The results suggest that the estimated equilibria

explain between 80%–90% of observations, indicating strong fit. Furthermore, the estimated

equilibria fit the data better than the standard multinomial model and as good as the multi-

nomial model conditioning on state. As in the previous test, the estimated equilibria perform

poorly for a variety of reasons. For example, it over predicts peace transitions by approxi-

mately 20 observations in the UK-Iraq-war pairs, but under predicts peaceful transitions in

the India-Pakistan-war pair by a similar amount. In a similar vein, columns 9–11 report the

percentage of dyads in which we reject the null hypothesis that the observed transition counts

were generated from the predicted Markov-transition matrix (Billingsley 1961). Overall, the

tests suggest our equilibria fit the data well, where we reject the null in 20%–30% of dyads.

As before, the equilibria appear to fit the data better than the standard models.

In addition, we compute our equilibria’s Kullback-Leibler distance using the three differ-

ent data types in Table 23. And we compare these distances to those from the two estimated

multinomial logits described above. Notice that we avoid traditional model tests in Vuong

(1989) and Clarke (2007) because the data’s Markovian structure and serial correlation po-

tentially violate the necessary IID assumptions. Both tests, however, motivate their analysis

with Kullback and Leibler (1951), and similar conclusions hold if we were to report either test.

Table 23 reports the results. On all three types of observations, the estimated equilibria have

smaller distances than either multinomial model on average. In addition, the equilibria have

5Given the large number of time periods and the small number of states, this latter possibility is unlikely.
6There are 436 dyad-state pairs in the data, because we lose some pairs when the dyad never enters the

relevant state, e.g., the U.S. and Canada never go to war.
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Table 23: Kullback-Leibler distance and comparison to non-strategic models

Mean distance
Observed

states
Conditional
transitions

Transition
matrix

Estimated
equilibria

0.030 0.157 0.061

Mutinomial
model

0.048 0.221 0.110

Mutinomial
cond. on
state

0.053 0.275 0.090

Caption: Cells report the mean Kullback-Leibler distance from the observed empirical distribution for three
models (rows) and three types of observations (columns). Smaller numbers indicate better fit. For observed
states, the equilibria have smaller distances than the multinomial and conditional multinomial models in
74.3% and 80.4% of observations, respectively. For conditional transitions and the transition matrix types,
the corresponding comparisons are 57.8% and 68.1% and 82.1% and 83.8%, respectively.

smaller distances than the multinomial and conditional multinomial models in the majority

of observations.
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