
POLS 309 – Working with data

Casey Crisman-Cox1

Spring 2022

1Much of this content is adapted from Brenton Kenkel’s e-book Practical
Data Analysis for Political Scientists https://bkenkel.com/pdaps/

1 / 69

https://bkenkel.com/pdaps/


Welcome back

Reminder office hours are

Me (Zoom)

I Monday 4-5pm

Mingsi (Zoom or in person)

I Thursday 4-5pm

Sam (Zoom)

I Wednesday 11am-Noon

2 / 69



Agenda

I REVIEW: What are data?
I Types of data
I Presenting data
I Using graphs to present data

3 / 69



What do we know?

Last time we talk about random variables. Observational data come
from random variable.

For instance, suppose that we are working quality control at a
brewery. Each individual beer may be good or skunked. We observe

I 10 beers in a day (data)
I from an unknown process that determines if they’re skunked or

not (Random variable)

4 / 69



Difference between data and the data generating process
The data generating process (DGP) is a model of how observed
data are created

I The DGP is a random variable
I The data are realizations from that random variable

In the beer example, we can imagine the DGP as
Nature/God/Universe/Fates/Loki/etc flipping a (probably unfair)
coin that determines whether any given beer is skunked.

In other cases we might think about more complicated models that
reflect how things like an individual’s vote choice is determined
which may include a combination of observed individual traits plus
unknown factors that we can chalk up as idiosyncrasies or acts of
Nature.

Data is what we observe, the DGP is our model for how those
observables come to be.

5 / 69



Difference between data and the data generating process
The data generating process (DGP) is a model of how observed
data are created

I The DGP is a random variable
I The data are realizations from that random variable

In the beer example, we can imagine the DGP as
Nature/God/Universe/Fates/Loki/etc flipping a (probably unfair)
coin that determines whether any given beer is skunked.

In other cases we might think about more complicated models that
reflect how things like an individual’s vote choice is determined
which may include a combination of observed individual traits plus
unknown factors that we can chalk up as idiosyncrasies or acts of
Nature.

Data is what we observe, the DGP is our model for how those
observables come to be.

5 / 69



Difference between data and the data generating process
The data generating process (DGP) is a model of how observed
data are created

I The DGP is a random variable
I The data are realizations from that random variable

In the beer example, we can imagine the DGP as
Nature/God/Universe/Fates/Loki/etc flipping a (probably unfair)
coin that determines whether any given beer is skunked.

In other cases we might think about more complicated models that
reflect how things like an individual’s vote choice is determined
which may include a combination of observed individual traits plus
unknown factors that we can chalk up as idiosyncrasies or acts of
Nature.

Data is what we observe, the DGP is our model for how those
observables come to be.

5 / 69



Types of data
In the brewery case, we have an example of discrete data.

I Discrete data take on a set of finite or fixed values

I Binary (unordered) {not skunked, skunked} → {0, 1}

I Count (ordered, finite or infinite) {Now many are skunked} to
{0, 1, 2, . . . }

I Categorical (ordered or unordered)

I What would an example of an ordered categorical? An
unordered? (Not necessary beer related)

I Ordered: How much you like something {A little, Neutral, A
lot}

I Unordered: Race {White, Black or African American, Asian
American, American Indian/Alaska Native, and Native
Hawaiian/Pacific Islander}

6 / 69



Types of data
In the brewery case, we have an example of discrete data.

I Discrete data take on a set of finite or fixed values

I Binary (unordered) {not skunked, skunked} → {0, 1}

I Count (ordered, finite or infinite) {Now many are skunked} to
{0, 1, 2, . . . }

I Categorical (ordered or unordered)

I What would an example of an ordered categorical? An
unordered? (Not necessary beer related)

I Ordered: How much you like something {A little, Neutral, A
lot}

I Unordered: Race {White, Black or African American, Asian
American, American Indian/Alaska Native, and Native
Hawaiian/Pacific Islander}

6 / 69



Types of data
In the brewery case, we have an example of discrete data.

I Discrete data take on a set of finite or fixed values

I Binary (unordered) {not skunked, skunked} → {0, 1}

I Count (ordered, finite or infinite) {Now many are skunked} to
{0, 1, 2, . . . }

I Categorical (ordered or unordered)

I What would an example of an ordered categorical? An
unordered? (Not necessary beer related)

I Ordered: How much you like something {A little, Neutral, A
lot}

I Unordered: Race {White, Black or African American, Asian
American, American Indian/Alaska Native, and Native
Hawaiian/Pacific Islander}

6 / 69



Types of data
In the brewery case, we have an example of discrete data.

I Discrete data take on a set of finite or fixed values

I Binary (unordered) {not skunked, skunked} → {0, 1}

I Count (ordered, finite or infinite) {Now many are skunked} to
{0, 1, 2, . . . }

I Categorical (ordered or unordered)

I What would an example of an ordered categorical? An
unordered? (Not necessary beer related)

I Ordered: How much you like something {A little, Neutral, A
lot}

I Unordered: Race {White, Black or African American, Asian
American, American Indian/Alaska Native, and Native
Hawaiian/Pacific Islander}

6 / 69



Types of data
In the brewery case, we have an example of discrete data.

I Discrete data take on a set of finite or fixed values

I Binary (unordered) {not skunked, skunked} → {0, 1}

I Count (ordered, finite or infinite) {Now many are skunked} to
{0, 1, 2, . . . }

I Categorical (ordered or unordered)

I What would an example of an ordered categorical? An
unordered? (Not necessary beer related)

I Ordered: How much you like something {A little, Neutral, A
lot}

I Unordered: Race {White, Black or African American, Asian
American, American Indian/Alaska Native, and Native
Hawaiian/Pacific Islander}

6 / 69



Types of data
In the brewery case, we have an example of discrete data.

I Discrete data take on a set of finite or fixed values

I Binary (unordered) {not skunked, skunked} → {0, 1}

I Count (ordered, finite or infinite) {Now many are skunked} to
{0, 1, 2, . . . }

I Categorical (ordered or unordered)

I What would an example of an ordered categorical? An
unordered? (Not necessary beer related)

I Ordered: How much you like something {A little, Neutral, A
lot}

I Unordered: Race {White, Black or African American, Asian
American, American Indian/Alaska Native, and Native
Hawaiian/Pacific Islander}

6 / 69



Types of data

Alternatively we sometimes have continuous data that can take on
any number of possible values, such as

I Strictly positive/negative: Height (always greater than 0)
I Weakly positive/negative: Income (at least 0)
I Bounded: Presidential approval over time (0-100) or Net

approval (−100-100)

Other examples that fit into these boxes?

7 / 69



What is a data frame?

In a particular study, we are interested in answering a question using
a data frame

A data frame is an N ×M matrix where each cell contains a piece
of data

In R we will use data.frame objects to represent this.

8 / 69



The Tidyverse

One very set of tools for working with data in R is called the
“Tidyverse.”

I It is a set of functions designed to make working with data
easier to program and read

I It has quickly become the standard for working with and
manipulating data

I There is a spectrum from true believers to light users. So the
things I teach may not match exactly with what your future
co-workers or even your TA’s prefer (but it should be close)

9 / 69



What is in the tidyverse

There are a lot of tidy packages in R. Today we want three of them
library(readr) # for importing/exporting data
library(dplyr) #for working with data
library(tidyr) #also for working with data

These three packages will do a lot of work for us going forward.
Your TAs may also introduce you to other helpful packages along
the way. We’ll also use:
library(knitr) #making tables

10 / 69



What does it mean to be “tidy”
According to the main authors behind the tidyverse the main traits
that define tidy data

1. Each variable is a column
2. Each observation is a row

Note that this requires us to define what an observation is ahead of
time. Common units of observation for social science include

1. Individuals
2. Individual–time
3. Countries
4. Country–years
5. Dyad–years (pairs of countries over time)
6. U.S. states
7. U.S. state–years
8. And so on. . .

Let’s see an example
11 / 69



Reading data
The main way that we’ll read data into R this semester is with the
read_csv function from the readr package. Note that this only
works for files that are CSV files. There are other functions for excel
files (.xls, .xlsx), Stata files (.dta), and others your TA will review
these in lab.
cw.data <- read_csv("civilwardata.csv", show_col_types = FALSE)
head(cw.data) #display first 6 rows

## # A tibble: 6 x 8
## country year ccode onset pop gdpen Oil
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 USA 1945 2 0 140969 7.63 0
## 2 USA 1946 2 0 141936 7.65 0
## 3 USA 1947 2 0 142713 8.02 0
## 4 USA 1948 2 0 145326 8.27 0
## 5 USA 1949 2 0 147987 8.04 0
## 6 USA 1950 2 0 152273 8.77 0
## # ... with 1 more variable: ethfrac <dbl>

What’s the unit of observation?

12 / 69



Looking at data
summary(cw.data)

## country year ccode
## Length:6610 Min. :1945 Min. : 2.0
## Class :character 1st Qu.:1964 1st Qu.:230.0
## Mode :character Median :1977 Median :451.0
## Mean :1976 Mean :450.6
## 3rd Qu.:1989 3rd Qu.:663.0
## Max. :1999 Max. :950.0
##
## onset pop
## Min. :0.00000 Min. : 222
## 1st Qu.:0.00000 1st Qu.: 3217
## Median :0.00000 Median : 8137
## Mean :0.01679 Mean : 31787
## 3rd Qu.:0.00000 3rd Qu.: 20601
## Max. :1.00000 Max. :1238599
## NA's :177
## gdpen Oil ethfrac
## Min. : 0.048 Min. :0.0000 Min. :0.0010
## 1st Qu.: 0.943 1st Qu.:0.0000 1st Qu.:0.1073
## Median : 2.028 Median :0.0000 Median :0.3255
## Mean : 3.694 Mean :0.1295 Mean :0.3854
## 3rd Qu.: 4.552 3rd Qu.:0.0000 3rd Qu.:0.6637
## Max. :66.735 Max. :1.0000 Max. :0.9250
## NA's :227 13 / 69



The pipe operator

The tidyverse is heavily characterized by its use of the pipe operator
%>%. This is a tool designed to make code easier to read and write.
Consider a situation where we want to apply functions f , g , and h
to some variable x . We could think of it as

I f (g(h(x)))

OR

I x → h()→ g()→ f ()

The pipe notation is the latter, it allows us to write in the order we
want to do things rather than lots of difficult to read nesting.

14 / 69



Making new variables
Often times we want to make adjusts to variables or make new ones.
In our civil war data, for example population is measured in 100s of
people, maybe we want it to be 100,000s. How do we do this

(divide by 1,000)
summary(cw.data$pop)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 222 3217 8137 31787 20601 1238599
## NA's
## 177
cw.data <- cw.data %>%

mutate(pop = pop/1000)
summary(cw.data$pop)

## Min. 1st Qu. Median Mean 3rd Qu.
## 0.222 3.217 8.137 31.787 20.601
## Max. NA's
## 1238.599 177

15 / 69



Making new variables
Often times we want to make adjusts to variables or make new ones.
In our civil war data, for example population is measured in 100s of
people, maybe we want it to be 100,000s. How do we do this
(divide by 1,000)
summary(cw.data$pop)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 222 3217 8137 31787 20601 1238599
## NA's
## 177
cw.data <- cw.data %>%

mutate(pop = pop/1000)
summary(cw.data$pop)

## Min. 1st Qu. Median Mean 3rd Qu.
## 0.222 3.217 8.137 31.787 20.601
## Max. NA's
## 1238.599 177 15 / 69



Long and wide data

Sometime the data we have is not tidy. Common examples include
“wide” data.

I Tidy data is sometimes called long data
I Wide data can be something weird like countries on rows, years

on columns, and a single variable filling the table.

Let’s look at an example

16 / 69



Wide data (Free press)

Wide data is not tidy. For example
press.dat <- read_csv("FreedomHouse_Pressdata.csv",

show_col_types = FALSE)
head(press.dat)[,1:5]

## # A tibble: 6 x 5
## country ccode X1979 X1980 X1981
## <chr> <dbl> <chr> <chr> <chr>
## 1 Afghanistan 700 NF NF NF
## 2 Albania 339 NF NF NF
## 3 Algeria 615 NF NF NF
## 4 Andorra 232 <NA> <NA> <NA>
## 5 Angola 540 NF NF NF
## 6 Antigua and Barbuda 58 <NA> <NA> F

17 / 69



Reshaping data

How can we make this data long? The tidyr package has the tool
for us
press.long <- pivot_longer(press.dat,

# cols asks what var we want
# to swing around
# starts_with helps us here
cols=starts_with("X"),
#new name for old column name
names_to = "year",
#new var name
values_to = "free.press")

18 / 69



Did it work?

head(press.long)

## # A tibble: 6 x 4
## country ccode year free.press
## <chr> <dbl> <chr> <chr>
## 1 Afghanistan 700 X1979 NF
## 2 Afghanistan 700 X1980 NF
## 3 Afghanistan 700 X1981 NF
## 4 Afghanistan 700 X1982 NF
## 5 Afghanistan 700 X1983 NF
## 6 Afghanistan 700 X1984 NF

19 / 69



Googling things

Note that we have an “X” in front of our years, that may cause
problems if we want to use the years for anything (the reason is that
R won’t let variable names start with a number). How can we
remove this? This is a prime time to try Googling for an answer

GOOGLE: Remove first letter from variable R

20 / 69

https://letmegooglethat.com/?q=Remove+first+letter+from+variable+R


Let’s do it

press.long <- press.long %>%
mutate(year=sub("X", "", year))

head(press.long)

## # A tibble: 6 x 4
## country ccode year free.press
## <chr> <dbl> <chr> <chr>
## 1 Afghanistan 700 1979 NF
## 2 Afghanistan 700 1980 NF
## 3 Afghanistan 700 1981 NF
## 4 Afghanistan 700 1982 NF
## 5 Afghanistan 700 1983 NF
## 6 Afghanistan 700 1984 NF

21 / 69



Just one more thing (Do you guys know the show
Colombo?)

Note that year is still not quite right. It’s stll listed as a character
not a number
press.long <- press.long %>%

mutate(year = as.integer(year))
head(press.long)

## # A tibble: 6 x 4
## country ccode year free.press
## <chr> <dbl> <int> <chr>
## 1 Afghanistan 700 1979 NF
## 2 Afghanistan 700 1980 NF
## 3 Afghanistan 700 1981 NF
## 4 Afghanistan 700 1982 NF
## 5 Afghanistan 700 1983 NF
## 6 Afghanistan 700 1984 NF

22 / 69



What can we do with this now

summary(press.long)

## country ccode year
## Length:6798 Min. : 2.0 Min. :1979
## Class :character 1st Qu.:290.0 1st Qu.:1987
## Mode :character Median :438.5 Median :1995
## Mean :464.1 Mean :1995
## 3rd Qu.:678.0 3rd Qu.:2003
## Max. :990.0 Max. :2011
## NA's :132
## free.press
## Length:6798
## Class :character
## Mode :character
##
##
##
##

23 / 69



Character and factor

Is that an informative summary for free press?

Not really.

I Sometimes we want to make a character/string variable in a
categorical variable

I In R, these are call factors
press.long <- press.long %>%

mutate(free.press = factor(free.press,
levels=c("NF", "PF", "F")))

summary(press.long$free.press)

## NF PF F NA's
## 2095 1626 2087 990

I The levels option tells it the ordering of the categories
(default is alphabetical)

24 / 69



Character and factor

Is that an informative summary for free press? Not really.

I Sometimes we want to make a character/string variable in a
categorical variable

I In R, these are call factors

press.long <- press.long %>%
mutate(free.press = factor(free.press,

levels=c("NF", "PF", "F")))
summary(press.long$free.press)

## NF PF F NA's
## 2095 1626 2087 990

I The levels option tells it the ordering of the categories
(default is alphabetical)

24 / 69



Character and factor

Is that an informative summary for free press? Not really.

I Sometimes we want to make a character/string variable in a
categorical variable

I In R, these are call factors
press.long <- press.long %>%

mutate(free.press = factor(free.press,
levels=c("NF", "PF", "F")))

summary(press.long$free.press)

## NF PF F NA's
## 2095 1626 2087 990

I The levels option tells it the ordering of the categories
(default is alphabetical)

24 / 69



Merging data

We now have two different data sets, we may want to combine
them. Here is where we use the merge function
data.merged <- merge(x=cw.data, y=press.long,

#variable names to match on
by=c("ccode", "year"))

dim(data.merged)

## [1] 3032 10
dim(cw.data)

## [1] 6610 8
dim(press.long)

## [1] 6798 4

25 / 69



Merging data

Why do these have difference sizes?

I By default merge only keeps observations where x and y
overlap. You can adjust this with

I all (keep all obs from both)

I all.x (keep all obs from x discard obs that only y has)

I all.y (keep all obs from y discard obs that only x has)

26 / 69



New example

dat1 <- data.frame(statecode =rep(1:4, each=2),
year=rep(c(1990, 1991),2),
treated = c(0,0,0,1,0,0,0,1))

dat1

## statecode year treated
## 1 1 1990 0
## 2 1 1991 0
## 3 2 1990 0
## 4 2 1991 1
## 5 3 1990 0
## 6 3 1991 0
## 7 4 1990 0
## 8 4 1991 1

Throughout we want to maintain exactly these 8 observations

27 / 69



Merging pitfall: 1 using alls

dat2 <- data.frame(state = c(1,1,2,3),
year = c(1990, 1990, 1990,1990),
gov1990 = c("Dem", "GOP", "Dem", "GOP"))

merge(dat1, dat2,
by.x=c("statecode", "year"),
by.y=c("state", "year"))

## statecode year treated gov1990
## 1 1 1990 0 Dem
## 2 1 1990 0 GOP
## 3 2 1990 0 Dem
## 4 3 1990 0 GOP

What all option do we need?

all.x

28 / 69



Merging pitfall: 1 using alls

dat2 <- data.frame(state = c(1,1,2,3),
year = c(1990, 1990, 1990,1990),
gov1990 = c("Dem", "GOP", "Dem", "GOP"))

merge(dat1, dat2,
by.x=c("statecode", "year"),
by.y=c("state", "year"))

## statecode year treated gov1990
## 1 1 1990 0 Dem
## 2 1 1990 0 GOP
## 3 2 1990 0 Dem
## 4 3 1990 0 GOP

What all option do we need? all.x

28 / 69



Merging pitfall 2: duplicates
merge(dat1, dat2,

by.x=c("statecode", "year"),
by.y=c("state", "year"),
all.x=TRUE)

## statecode year treated gov1990
## 1 1 1990 0 Dem
## 2 1 1990 0 GOP
## 3 1 1991 0 <NA>
## 4 2 1990 0 Dem
## 5 2 1991 1 <NA>
## 6 3 1990 0 GOP
## 7 3 1991 0 <NA>
## 8 4 1990 0 <NA>
## 9 4 1991 1 <NA>

Now what’s wrong?

With duplicates you need to figure out why they
occur. Typos in the data? Midyear changes (which do you want?)?
Something else?

29 / 69



Merging pitfall 2: duplicates
merge(dat1, dat2,

by.x=c("statecode", "year"),
by.y=c("state", "year"),
all.x=TRUE)

## statecode year treated gov1990
## 1 1 1990 0 Dem
## 2 1 1990 0 GOP
## 3 1 1991 0 <NA>
## 4 2 1990 0 Dem
## 5 2 1991 1 <NA>
## 6 3 1990 0 GOP
## 7 3 1991 0 <NA>
## 8 4 1990 0 <NA>
## 9 4 1991 1 <NA>

Now what’s wrong? With duplicates you need to figure out why they
occur.

Typos in the data? Midyear changes (which do you want?)?
Something else?

29 / 69



Merging pitfall 2: duplicates
merge(dat1, dat2,

by.x=c("statecode", "year"),
by.y=c("state", "year"),
all.x=TRUE)

## statecode year treated gov1990
## 1 1 1990 0 Dem
## 2 1 1990 0 GOP
## 3 1 1991 0 <NA>
## 4 2 1990 0 Dem
## 5 2 1991 1 <NA>
## 6 3 1990 0 GOP
## 7 3 1991 0 <NA>
## 8 4 1990 0 <NA>
## 9 4 1991 1 <NA>

Now what’s wrong? With duplicates you need to figure out why they
occur. Typos in the data? Midyear changes (which do you want?)?
Something else?

29 / 69



Edit before
Suppose it was a midyear change (special election) and we just want
the first one. We can just delete it first.
dat2 <- dat2 %>% filter(! (state==1 & gov1990=="GOP" ))
merge(dat1, dat2, by.x=c("statecode", "year"),

by.y=c("state", "year"),
all.x=TRUE)

## statecode year treated gov1990
## 1 1 1990 0 Dem
## 2 1 1991 0 <NA>
## 3 2 1990 0 Dem
## 4 2 1991 1 <NA>
## 5 3 1990 0 GOP
## 6 3 1991 0 <NA>
## 7 4 1990 0 <NA>
## 8 4 1991 1 <NA>

30 / 69



One more thought
What if we didn’t want those NAs? Suppose we just wanted gov to
reflect the governor at the start of the study? (i.e., put the 1990
value in for both years). How might we do that with merge?

Just
merge on states not years
dat2 <- dat2 %>% select(!year)
# remove year from dat2 so we don't have two year vars
merge(dat1, dat2, by.x=c("statecode"), by.y=c("state"),

all.x=TRUE)

## statecode year treated gov1990
## 1 1 1990 0 Dem
## 2 1 1991 0 Dem
## 3 2 1990 0 Dem
## 4 2 1991 1 Dem
## 5 3 1990 0 GOP
## 6 3 1991 0 GOP
## 7 4 1990 0 <NA>
## 8 4 1991 1 <NA>

31 / 69



One more thought
What if we didn’t want those NAs? Suppose we just wanted gov to
reflect the governor at the start of the study? (i.e., put the 1990
value in for both years). How might we do that with merge? Just
merge on states not years
dat2 <- dat2 %>% select(!year)
# remove year from dat2 so we don't have two year vars
merge(dat1, dat2, by.x=c("statecode"), by.y=c("state"),

all.x=TRUE)

## statecode year treated gov1990
## 1 1 1990 0 Dem
## 2 1 1991 0 Dem
## 3 2 1990 0 Dem
## 4 2 1991 1 Dem
## 5 3 1990 0 GOP
## 6 3 1991 0 GOP
## 7 4 1990 0 <NA>
## 8 4 1991 1 <NA> 31 / 69



Summaries: Descriptive statistics
We saw before that the summary command is great for a first cut,
but it’s often not in a form we want to show a client. For that we
are going to use summarise, but for this we need to specify what
we want to see.

What are some attributes of the data that might be interesting?

Sample

I min
I max
I mean
I variance or standard deviation
I others

my.summary <- function(x){
return(c(min(x, na.rm=TRUE), mean(x, na.rm=TRUE),

sd(x, na.rm=TRUE), max(x, na.rm=TRUE)))
}

32 / 69



Summaries: Descriptive statistics
We saw before that the summary command is great for a first cut,
but it’s often not in a form we want to show a client. For that we
are going to use summarise, but for this we need to specify what
we want to see.

What are some attributes of the data that might be interesting?

Sample

I min
I max
I mean
I variance or standard deviation
I others

my.summary <- function(x){
return(c(min(x, na.rm=TRUE), mean(x, na.rm=TRUE),

sd(x, na.rm=TRUE), max(x, na.rm=TRUE)))
}

32 / 69



Summaries: Descriptive statistics

summary.stats <- data.merged %>%
select(c("onset", "pop", "gdpen", "Oil", "ethfrac")) %>%
summarize(across(.fns=my.summary))

summary.stats

## onset pop gdpen Oil
## 1 0.0000000 0.29300 0.1962578 0.0000000
## 2 0.0171504 34.27207 4.4956290 0.1576517
## 3 0.1298531 117.62707 4.6483540 0.3644742
## 4 1.0000000 1238.59938 31.9689999 1.0000000
## ethfrac
## 1 0.0010000
## 2 0.4101338
## 3 0.2847634
## 4 0.9250348

what’s missing?

33 / 69



Summaries: Descriptive statistics

summary.stats <- summary.stats %>%
mutate(stat=c("min", "mean", "std. dev", "max"),

.before=1) #.before tells it where to put the new col
summary.stats

## stat onset pop gdpen
## 1 min 0.0000000 0.29300 0.1962578
## 2 mean 0.0171504 34.27207 4.4956290
## 3 std. dev 0.1298531 117.62707 4.6483540
## 4 max 1.0000000 1238.59938 31.9689999
## Oil ethfrac
## 1 0.0000000 0.0010000
## 2 0.1576517 0.4101338
## 3 0.3644742 0.2847634
## 4 1.0000000 0.9250348

34 / 69



Summaries: Descriptive statistics by group

summary.stats.by.press <- data.merged %>%
select(!c(year, starts_with("country"), ccode)) %>%
group_by(free.press) %>%
summarise(across(.fns=mean, na.rm=TRUE))

summary.stats.by.press

## # A tibble: 4 x 6
## free.press onset pop gdpen Oil ethfrac
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NF 0.0225 33.8 2.59 0.231 0.462
## 2 PF 0.0214 31.7 2.90 0.137 0.452
## 3 F 0.00426 38.4 8.04 0.0883 0.301
## 4 <NA> 0.0430 22.2 4.21 0.140 0.490

35 / 69



What happened there?
Glad you asked. Let’s look at that line
summary.stats.by.press <- data.merged %>%

select(!c(year, starts_with("country"), ccode)) %>%
group_by(free.press) %>%
summarise(across(.fns=mean, na.rm=TRUE))

and break it down

I select we know this, we’re going to subset the data

I !c(year, starts_with("country"), ccode) these columns
I ! NOT
I year
I starts_with("country") Any column that starts with “country”
I ccode
I group_by whatever happens next happens to each group
I summarise we know this, we’re going to summarize some data
I across We’re going to do the same function to all the columns
I mean function to apply
I na.rm=TRUE option for mean

36 / 69



What happened there?
Glad you asked. Let’s look at that line
summary.stats.by.press <- data.merged %>%

select(!c(year, starts_with("country"), ccode)) %>%
group_by(free.press) %>%
summarise(across(.fns=mean, na.rm=TRUE))

and break it down

I select we know this, we’re going to subset the data
I !c(year, starts_with("country"), ccode) these columns
I ! NOT
I year
I starts_with("country") Any column that starts with “country”
I ccode

I group_by whatever happens next happens to each group
I summarise we know this, we’re going to summarize some data
I across We’re going to do the same function to all the columns
I mean function to apply
I na.rm=TRUE option for mean

36 / 69



What happened there?
Glad you asked. Let’s look at that line
summary.stats.by.press <- data.merged %>%

select(!c(year, starts_with("country"), ccode)) %>%
group_by(free.press) %>%
summarise(across(.fns=mean, na.rm=TRUE))

and break it down

I select we know this, we’re going to subset the data
I !c(year, starts_with("country"), ccode) these columns
I ! NOT
I year
I starts_with("country") Any column that starts with “country”
I ccode
I group_by whatever happens next happens to each group

I summarise we know this, we’re going to summarize some data
I across We’re going to do the same function to all the columns
I mean function to apply
I na.rm=TRUE option for mean

36 / 69



What happened there?
Glad you asked. Let’s look at that line
summary.stats.by.press <- data.merged %>%

select(!c(year, starts_with("country"), ccode)) %>%
group_by(free.press) %>%
summarise(across(.fns=mean, na.rm=TRUE))

and break it down

I select we know this, we’re going to subset the data
I !c(year, starts_with("country"), ccode) these columns
I ! NOT
I year
I starts_with("country") Any column that starts with “country”
I ccode
I group_by whatever happens next happens to each group
I summarise we know this, we’re going to summarize some data

I across We’re going to do the same function to all the columns
I mean function to apply
I na.rm=TRUE option for mean

36 / 69



What happened there?
Glad you asked. Let’s look at that line
summary.stats.by.press <- data.merged %>%

select(!c(year, starts_with("country"), ccode)) %>%
group_by(free.press) %>%
summarise(across(.fns=mean, na.rm=TRUE))

and break it down

I select we know this, we’re going to subset the data
I !c(year, starts_with("country"), ccode) these columns
I ! NOT
I year
I starts_with("country") Any column that starts with “country”
I ccode
I group_by whatever happens next happens to each group
I summarise we know this, we’re going to summarize some data
I across We’re going to do the same function to all the columns

I mean function to apply
I na.rm=TRUE option for mean

36 / 69



What happened there?
Glad you asked. Let’s look at that line
summary.stats.by.press <- data.merged %>%

select(!c(year, starts_with("country"), ccode)) %>%
group_by(free.press) %>%
summarise(across(.fns=mean, na.rm=TRUE))

and break it down

I select we know this, we’re going to subset the data
I !c(year, starts_with("country"), ccode) these columns
I ! NOT
I year
I starts_with("country") Any column that starts with “country”
I ccode
I group_by whatever happens next happens to each group
I summarise we know this, we’re going to summarize some data
I across We’re going to do the same function to all the columns
I mean function to apply
I na.rm=TRUE option for mean

36 / 69



Presenting descriptive statistics
Nobody, but nobody wants to see ugly computer monospaced text.
When you’re preparing analysis for other people to read, make it
look good and readable, for example

kable(summary.stats, digits=2,
caption="Summary statistics",
col.names = c("", "Onset", "Pop.",

"GDP per cap.",
"Oil",
"Eth. Frac."))

Table 1: Summary statistics

Onset Pop. GDP per cap. Oil Eth. Frac.

min 0.00 0.29 0.20 0.00 0.00
mean 0.02 34.27 4.50 0.16 0.41
std. dev 0.13 117.63 4.65 0.36 0.28
max 1.00 1238.60 31.97 1.00 0.93

37 / 69



Presenting descriptive statistics
Nobody, but nobody wants to see ugly computer monospaced text.
When you’re preparing analysis for other people to read, make it
look good and readable, for example
kable(summary.stats, digits=2,

caption="Summary statistics",
col.names = c("", "Onset", "Pop.",

"GDP per cap.",
"Oil",
"Eth. Frac."))

Table 1: Summary statistics

Onset Pop. GDP per cap. Oil Eth. Frac.

min 0.00 0.29 0.20 0.00 0.00
mean 0.02 34.27 4.50 0.16 0.41
std. dev 0.13 117.63 4.65 0.36 0.28
max 1.00 1238.60 31.97 1.00 0.93

37 / 69



Summaries: Tabulations

Sometimes with binary and categorical variables it makes as much
or more sense to present tabulations or frequencies
table(data.merged$Oil)

##
## 0 1
## 2554 478
table(data.merged$free.press)

##
## NF PF F
## 1157 842 940

To give your reader a sense as to distribution of the categories

38 / 69



Crosstabs

You can also use crosstabs to make a point about an interesting
trend in your data.

Are civil conflicts more likely in freer states?
table(Onset=data.merged$onset,

Press=data.merged$free.press)

## Press
## Onset NF PF F
## 0 1131 824 936
## 1 26 18 4

39 / 69



Crosstabs
Make them look good for papers. Remember you need to impress
clients and they need to understand what you’re doing.

Are civil conflicts more likely in freer states?
output <- table(Onset=data.merged$onset,

Press=data.merged$free.press)
row.names(output) <- c("Onset", "No onset")
kable(output,

caption="Cvil conflict onset and press freedom",
col.names=c("Not free", "Partially Free",

"Free"))

Table 2: Cvil conflict onset and press freedom

Not free Partially Free Free

Onset 1131 824 936
No onset 26 18 4

Note: that we have to set row names before calling kable it’s a
dumb quirk.

40 / 69



Saving data

You can save your csv files, too.

I NEVER overwrite your original data. You never know when
you’ll find a mistake. Keep original data safe at all times

write_csv(data.merged, file="myNewCWdata.csv")

41 / 69



DAY 2: What do we know?

So far we’ve

I Reading data into R
I Making new variables
I Summarizing data
I Summary statistics and tables

We’re going to do some of the same things today, but with a focus
on visualizing data

42 / 69



Packages

As with anytime we work with data, we’ll want
library(dplyr)
library(readr)
library(tidyr)

Today we’ll add in
library(stringr)
library(ggplot2)

43 / 69



Setup

The ggplot2 package is another component of the tidyverse, it
opens the door to a number of plots.

I We’ll start by looking at some COVID data in 2021. Our goal
will be to summarize deaths (continuous) by

I State (unit of observation)
I Trump vote share (continuous variable)
I State income levels (discrete, ordered)
I Region (discrete, unordered)

44 / 69



Setup
Data from cdc.gov
covid <- read_csv("covid_data.csv", show_col_types = FALSE)
head(covid)

## # A tibble: 6 x 15
## submission_date state tot_cases conf_cases
## <chr> <chr> <dbl> <dbl>
## 1 12/01/2021 ND 163565 135705
## 2 09/01/2021 ND 118491 107475
## 3 08/08/2021 MD 473969 NA
## 4 05/13/2020 VT 855 NA
## 5 02/02/2021 IL 1130917 1130917
## 6 06/10/2020 VT 1009 NA
## # ... with 11 more variables: prob_cases <dbl>,
## # new_case <dbl>, pnew_case <dbl>,
## # tot_death <dbl>, conf_death <dbl>,
## # prob_death <dbl>, new_death <dbl>,
## # pnew_death <dbl>, created_at <chr>,
## # consent_cases <chr>, consent_deaths <chr>

45 / 69

cdc.gov


Aggregating
There’s a lot going on here. We’ll need to aggregate to the
state-YTD observation
covid <- covid %>%

filter(str_detect(submission_date, "2021")) %>% #new
select(c("state", "new_death")) %>%
group_by(state) %>%
summarize(deaths=sum(new_death, na.rm=T))

Line by line this:

1. covid data we’re using
2. filter subset by rows
3. str_detect does the string/character variable

submission_date contain "2021"
4. select subset by columns
5. group_by aggregate by group
6. summarize aggregate the data by creating a variable deaths

by summing new_death within each state

46 / 69



Aggregating
There’s a lot going on here. We’ll need to aggregate to the
state-YTD observation
covid <- covid %>%

filter(str_detect(submission_date, "2021")) %>% #new
select(c("state", "new_death")) %>%
group_by(state) %>%
summarize(deaths=sum(new_death, na.rm=T))

Line by line this:

1. covid data we’re using

2. filter subset by rows
3. str_detect does the string/character variable

submission_date contain "2021"
4. select subset by columns
5. group_by aggregate by group
6. summarize aggregate the data by creating a variable deaths

by summing new_death within each state

46 / 69



Aggregating
There’s a lot going on here. We’ll need to aggregate to the
state-YTD observation
covid <- covid %>%

filter(str_detect(submission_date, "2021")) %>% #new
select(c("state", "new_death")) %>%
group_by(state) %>%
summarize(deaths=sum(new_death, na.rm=T))

Line by line this:

1. covid data we’re using
2. filter subset by rows

3. str_detect does the string/character variable
submission_date contain "2021"

4. select subset by columns
5. group_by aggregate by group
6. summarize aggregate the data by creating a variable deaths

by summing new_death within each state

46 / 69



Aggregating
There’s a lot going on here. We’ll need to aggregate to the
state-YTD observation
covid <- covid %>%

filter(str_detect(submission_date, "2021")) %>% #new
select(c("state", "new_death")) %>%
group_by(state) %>%
summarize(deaths=sum(new_death, na.rm=T))

Line by line this:

1. covid data we’re using
2. filter subset by rows
3. str_detect does the string/character variable

submission_date contain "2021"

4. select subset by columns
5. group_by aggregate by group
6. summarize aggregate the data by creating a variable deaths

by summing new_death within each state

46 / 69



Aggregating
There’s a lot going on here. We’ll need to aggregate to the
state-YTD observation
covid <- covid %>%

filter(str_detect(submission_date, "2021")) %>% #new
select(c("state", "new_death")) %>%
group_by(state) %>%
summarize(deaths=sum(new_death, na.rm=T))

Line by line this:

1. covid data we’re using
2. filter subset by rows
3. str_detect does the string/character variable

submission_date contain "2021"
4. select subset by columns

5. group_by aggregate by group
6. summarize aggregate the data by creating a variable deaths

by summing new_death within each state

46 / 69



Aggregating
There’s a lot going on here. We’ll need to aggregate to the
state-YTD observation
covid <- covid %>%

filter(str_detect(submission_date, "2021")) %>% #new
select(c("state", "new_death")) %>%
group_by(state) %>%
summarize(deaths=sum(new_death, na.rm=T))

Line by line this:

1. covid data we’re using
2. filter subset by rows
3. str_detect does the string/character variable

submission_date contain "2021"
4. select subset by columns
5. group_by aggregate by group

6. summarize aggregate the data by creating a variable deaths
by summing new_death within each state

46 / 69



Aggregating
There’s a lot going on here. We’ll need to aggregate to the
state-YTD observation
covid <- covid %>%

filter(str_detect(submission_date, "2021")) %>% #new
select(c("state", "new_death")) %>%
group_by(state) %>%
summarize(deaths=sum(new_death, na.rm=T))

Line by line this:

1. covid data we’re using
2. filter subset by rows
3. str_detect does the string/character variable

submission_date contain "2021"
4. select subset by columns
5. group_by aggregate by group
6. summarize aggregate the data by creating a variable deaths

by summing new_death within each state
46 / 69



Did it work

head(covid)

## # A tibble: 6 x 2
## state deaths
## <chr> <dbl>
## 1 AK 585
## 2 AL 9490
## 3 AR 5192
## 4 AS 0
## 5 AZ 15365
## 6 CA 50473

47 / 69



What’s next
To get to deaths per 1000 people we need a population value
census.gov provides such data.
state.pop <- read_csv("state_pop.csv", show_col_types = FALSE)
head(state.pop)

## # A tibble: 6 x 5
## GEO_ID NAME POP_BASE2020 POP_2020 POP_2021
## <chr> <chr> <chr> <chr> <chr>
## 1 id Geogr~ Estimates Ba~ Populati~ Populat~
## 2 0100000US Unite~ 331449281 331501080 3318937~
## 3 0200000US1 North~ 57609148 57525633 57159838
## 4 0200000US2 Midwe~ 68985454 68935174 68841444
## 5 0200000US3 South~ 126266107 126409007 1272253~
## 6 0200000US4 West ~ 78588572 78631266 78667134

Now because the census hates us, they have double variable names
and no state abbreviations

48 / 69

census.gov


Clean up

state.info <- read_csv("state_info.csv",
show_col_types = FALSE)

state.pop <- state.pop %>%
slice(-1) %>% #slice let's you select rows by number
select(c("NAME", "POP_2021")) %>%
mutate(POP_2021 = as.numeric(POP_2021)) %>%
merge(state.abrv, by.x="NAME", by.y="name", all.y=TRUE)

I state.abb and state.name are built in data that help us out
with US states

I How many rows and what columns do we have now?

49 / 69



results
head(state.pop)

## NAME POP_2021 state region
## 1 Alabama 5039877 AL South
## 2 Alaska 732673 AK West
## 3 Arizona 7276316 AZ West
## 4 Arkansas 3025891 AR South
## 5 California 39237836 CA West
## 6 Colorado 5812069 CO West
## division
## 1 East South Central
## 2 Pacific
## 3 Mountain
## 4 West South Central
## 5 Pacific
## 6 Mountain
dim(state.pop)

## [1] 51 5
50 / 69



Merge
covid <- merge(covid, state.pop, by="state")
head(covid)

## state deaths NAME POP_2021 region
## 1 AK 585 Alaska 732673 West
## 2 AL 9490 Alabama 5039877 South
## 3 AR 5192 Arkansas 3025891 South
## 4 AZ 15365 Arizona 7276316 West
## 5 CA 50473 California 39237836 West
## 6 CO 5457 Colorado 5812069 West
## division
## 1 Pacific
## 2 East South Central
## 3 West South Central
## 4 Mountain
## 5 Pacific
## 6 Mountain

51 / 69



By population

How do we make deaths per 1000 people then? mutate?
summarize? something else?

covid <- covid %>%
mutate(pop1000= POP_2021/1000,

deaths.per1000 = deaths/pop1000)

52 / 69



By population

How do we make deaths per 1000 people then? mutate?
summarize? something else?
covid <- covid %>%

mutate(pop1000= POP_2021/1000,
deaths.per1000 = deaths/pop1000)

52 / 69



Single variable visualization

Let’s time out for now and look at what we have.

We can look at single continuous and their distribution using a
histogram

I A histogram creates bins and sorts the data into those bins to
give us a graphical representation of the sample

I This is really only informative for continuous or count variables.
For categorical variables we would look at a bar chart.

53 / 69



Hisograms

To create a histogram of the population variable we would write
ggplot(covid)+

geom_histogram(aes(x= deaths.per1000))

0

1

2

3

4

5

0.5 1.0 1.5 2.0
deaths.per1000

co
un

t

54 / 69



What’s happening here

Let’s do this piece by piece

I ggplot(covid) initializes a plot and tells ggplot we’re using
the covid data frame

I geom_histogram We want a histogram
I aes Stands for “aesthetic.” Different plots have different

aesthetics. Because histograms only use one variable and it’s
along the x -axis, we specify it as x=deaths.per1000.

55 / 69



What’s happening here

Let’s do this piece by piece

I ggplot(covid) initializes a plot and tells ggplot we’re using
the covid data frame

I geom_histogram We want a histogram
I aes Stands for “aesthetic.” Different plots have different

aesthetics. Because histograms only use one variable and it’s
along the x -axis, we specify it as x=deaths.per1000.

55 / 69



Making it better

Now if this is just for your own exploratory use then we can stop.
But if it’s for a problem set or report (or a real client one day), then
you’ll want to make it more informative
ggplot(covid)+

geom_histogram(aes(x= deaths.per1000))+
xlab("Death per 1000 people")+
ylab("Frequency")+
ggtitle("Covid deaths per 1000 people by state 2021")

56 / 69



Making it better

Now if this is just for your own exploratory use then we can stop.
But if it’s for a problem set or report (or a real client one day), then
you’ll want to make it more informative

0

1

2

3

4

5

0.5 1.0 1.5 2.0
Death per 1000 people

F
re

qu
en

cy

Covid deaths per 1000 people by state 2021

56 / 69



Detecting a normal DGP
We used QQ plots and lines to diagnose if data are consistent with
a Normal DGP: here’s how
ggplot(covid)+

geom_qq(aes(sample= deaths.per1000))+ #different aes
geom_qq_line(aes(sample= deaths.per1000))+
xlab("Theoretical Quantitles")+
ylab("Sample Quantiles")

0.0

0.5

1.0

1.5

2.0

2.5

−2 −1 0 1 2
Theoretical Quantitles

S
am

pl
e 

Q
ua

nt
ile

s

57 / 69



Let’s build
Let’s take a look at state income, maybe richer states will have
fewer deaths (data from bea.gov)
income <- read_csv("income_groups.csv",

show_col_types = FALSE)
head(income)

## # A tibble: 6 x 2
## state income.group
## <chr> <chr>
## 1 AK High
## 2 AL Low
## 3 AR Low
## 4 AZ Low
## 5 CA High
## 6 CO High
covid <- merge(covid, income, by="state") %>%

mutate(income.group=factor(income.group,
levels=c("Low", "Middle", "High")))

58 / 69

bea.gov


Bar graphs (discrete single variable)

ggplot(covid)+
geom_bar(aes(x= income.group))+
xlab("State income level")+
ylab("Frequency")

0

5

10

15

Low Middle High
State income level

F
re

qu
en

cy

A discrete alternative to the histogram is a classic bar graph

This tells us something about how these are measured. . . in thirds.
Exploratory plots can be helpful when documentation isn’t clear.

59 / 69



Two way graphs: box plot (continuous by discrete)

One way we can look for trends is to compare a continuous variable
across discrete categories. One option here is a box plot by income
ggplot(covid)+

geom_boxplot(aes(x = income.group, y = deaths.per1000))+
ylab("Covid deaths per 1000 people")+
xlab("State income level")

60 / 69



Two way graphs: box plot (continuous by discrete)

One way we can look for trends is to compare a continuous variable
across discrete categories. One option here is a box plot by income

0.5

1.0

1.5

2.0

Low Middle High
State income level

C
ov

id
 d

ea
th

s 
pe

r 
10

00
 p

eo
pl

e

60 / 69



Two way graphs: box plot (continuous by discrete)

One way we can look for trends is to compare a continuous variable
across discrete categories. One option here is a box plot by income

0.5

1.0

1.5

2.0

Low Middle High
State income level

C
ov

id
 d

ea
th

s 
pe

r 
10

00
 p

eo
pl

e

59 / 69



Two way graphs: box plot (continuous by discrete)

What goes into a box plot?

I Center line:

Median

I Top of the box:

75th percentile

I Bottom of the box:

25th percentile

I Top “whisker”:

Maximum observation that is not greater than
1.5 the IQR (height of the box)

I Bottom “whisker”:

Minimum observation that is not less than
1.5 the IQR (height of the box)

I Other points:

Outliers (beyond 1.5 IQR from the median)

60 / 69



Two way graphs: box plot (continuous by discrete)

What goes into a box plot?

I Center line: Median

I Top of the box:

75th percentile

I Bottom of the box:

25th percentile

I Top “whisker”:

Maximum observation that is not greater than
1.5 the IQR (height of the box)

I Bottom “whisker”:

Minimum observation that is not less than
1.5 the IQR (height of the box)

I Other points:

Outliers (beyond 1.5 IQR from the median)

60 / 69



Two way graphs: box plot (continuous by discrete)

What goes into a box plot?

I Center line: Median

I Top of the box: 75th percentile

I Bottom of the box: 25th percentile

I Top “whisker”:

Maximum observation that is not greater than
1.5 the IQR (height of the box)

I Bottom “whisker”:

Minimum observation that is not less than
1.5 the IQR (height of the box)

I Other points:

Outliers (beyond 1.5 IQR from the median)

60 / 69



Two way graphs: box plot (continuous by discrete)

What goes into a box plot?

I Center line: Median

I Top of the box: 75th percentile

I Bottom of the box: 25th percentile

I Top “whisker”: Maximum observation that is not greater than
1.5 the IQR (height of the box)

I Bottom “whisker”: Minimum observation that is not less than
1.5 the IQR (height of the box)

I Other points:

Outliers (beyond 1.5 IQR from the median)

60 / 69



Two way graphs: box plot (continuous by discrete)

What goes into a box plot?

I Center line: Median

I Top of the box: 75th percentile

I Bottom of the box: 25th percentile

I Top “whisker”: Maximum observation that is not greater than
1.5 the IQR (height of the box)

I Bottom “whisker”: Minimum observation that is not less than
1.5 the IQR (height of the box)

I Other points: Outliers (beyond 1.5 IQR from the median)

60 / 69



Two way graphs: box plot (continuous by discrete)

One way we can look for trends is to compare a continuous variable
across discrete categories. One option here is a box plot by region
ggplot(covid)+

geom_boxplot(aes(x = region, y = deaths.per1000))+
ylab("Covid deaths per 1000 people")+
xlab("Region")

61 / 69



Two way graphs: box plot (continuous by discrete)
One way we can look for trends is to compare a continuous variable
across discrete categories. One option here is a box plot by region

0.5

1.0

1.5

2.0

North Central Northeast South West
Region

C
ov

id
 d

ea
th

s 
pe

r 
10

00
 p

eo
pl

e

61 / 69



Multiple graphs: facetted plots (discrete by anything)

We can also do sub-group analysis by looking at facets
ggplot(covid, aes(x = deaths.per1000)) +

geom_histogram() +
facet_wrap("region")+ #note that this is quoted
xlab("Covid deaths")+
ylab("Frequency")

62 / 69



Multiple graphs: facetted plots (discrete by anything)

We can also do sub-group analysis by looking at facets

South West

North Central Northeast

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

0
1
2
3

0
1
2
3

Covid deaths

F
re

qu
en

cy

62 / 69



Two way graphs: Scatter plot (continuous by continuous)
For two continuous variables, a scatter plot is a very useful
vizualization and is a great place to start any exploratory analysis
with continuous variables. Let’s go ahead and add in Trump vote
share

vote.share <- read_csv("1976-2020-president.csv",
show_col_types = FALSE)

head(vote.share)

## # A tibble: 6 x 15
## year state state_po state_fips state_cen state_ic
## <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1976 ALABAMA AL 1 63 41
## 2 1976 ALABAMA AL 1 63 41
## 3 1976 ALABAMA AL 1 63 41
## 4 1976 ALABAMA AL 1 63 41
## 5 1976 ALABAMA AL 1 63 41
## 6 1976 ALABAMA AL 1 63 41
## # ... with 9 more variables: office <chr>,
## # candidate <chr>, party_detailed <chr>,
## # writein <lgl>, candidatevotes <dbl>,
## # totalvotes <dbl>, version <dbl>, notes <lgl>,
## # party_simplified <chr>

63 / 69



Two way graphs: Scatter plot (continuous by continuous)
For two continuous variables, a scatter plot is a very useful
vizualization and is a great place to start any exploratory analysis
with continuous variables. Let’s go ahead and add in Trump vote
share
vote.share <- read_csv("1976-2020-president.csv",

show_col_types = FALSE)
head(vote.share)

## # A tibble: 6 x 15
## year state state_po state_fips state_cen state_ic
## <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1976 ALABAMA AL 1 63 41
## 2 1976 ALABAMA AL 1 63 41
## 3 1976 ALABAMA AL 1 63 41
## 4 1976 ALABAMA AL 1 63 41
## 5 1976 ALABAMA AL 1 63 41
## 6 1976 ALABAMA AL 1 63 41
## # ... with 9 more variables: office <chr>,
## # candidate <chr>, party_detailed <chr>,
## # writein <lgl>, candidatevotes <dbl>,
## # totalvotes <dbl>, version <dbl>, notes <lgl>,
## # party_simplified <chr>

63 / 69



Take what we need

vote.share <- vote.share %>%
filter(office=="US PRESIDENT" & year==2020 &

candidate %in% c("BIDEN, JOSEPH R. JR" ,
"TRUMP, DONALD J.")) %>%

group_by(state_po) %>%
summarize(vote.share=candidatevotes/sum(candidatevotes),

candidate=candidate)%>%
filter(candidate=="TRUMP, DONALD J.") %>%
select(c("state_po","vote.share"))

covid <- merge(covid, vote.share,
by.x="state", by.y="state_po")

Who wants to talk me through this one?

64 / 69



Two way graphs: Scatter plot (continuous by continuous)

For two continuous variables, a scatter plot is a very useful
vizualization and is a great place to start any exploratory analysis
with continuous variables. Let’s go ahead and add in Trump vote
share
ggplot(covid)+

geom_point(aes(x = vote.share, y = deaths.per1000))+
ylab("Deaths per 100 people")+
xlab("Trump vote share")

65 / 69



Two way graphs: Scatter plot (continuous by continuous)

For two continuous variables, a scatter plot is a very useful
vizualization and is a great place to start any exploratory analysis
with continuous variables. Let’s go ahead and add in Trump vote
share

0.5

1.0

1.5

2.0

0.2 0.4 0.6
Trump vote share

D
ea

th
s 

pe
r 

10
0 

pe
op

le

65 / 69



Two way graphs: Scatter plot (continuous by continuous)

This one way to present a possible trend, but people always want to
know which dots are what. One neat trick is to use labels instead of
points
ggplot(covid)+

geom_text(aes(x = vote.share, y = deaths.per1000,
label=state))+

ylab("Deaths per 100 people")+
xlab("Trump vote share")

66 / 69



Two way graphs: Scatter plot (continuous by continuous)
This one way to present a possible trend, but people always want to
know which dots are what. One neat trick is to use labels instead of
points

AK

AL
AR

AZ

CA

COCT

DC

DE

FL
GA

HI

IA
ID

IL

IN
KS

KYLA

MA
MD ME

MI

MN
MO
MS

MT

NC

ND

NE

NH

NJ

NM
NV

NY

OH
OK

OR

PA

RI

SC

SD

TN

TX

UT

VA

VT

WA
WI

WV

WY

0.5

1.0

1.5

2.0

0.2 0.4 0.6
Trump vote share

D
ea

th
s 

pe
r 

10
0 

pe
op

le

66 / 69



Using colors, shape, and size to tell a story

We can use the size, color, or shape of a point to include more
information in a plot. Let’s go back to the scatter plot and say we
wanted to include information about region. We could facet or
ggplot(covid)+

geom_text(aes(x = vote.share, y = deaths.per1000,
label=state, color=income.group))+

ylab("Deaths per 100 people")+
xlab("Trump vote share")+
guides(color=guide_legend(title="Income"))+
theme(legend.position = "bottom")

67 / 69



Using colors, shape, and size to tell a story
We can use the size, color, or shape of a point to include more
information in a plot. Let’s go back to the scatter plot and say we
wanted to include information about region. We could facet or

AK

AL
AR

AZ

CA

COCT

DC

DE

FL
GA

HI

IA
ID

IL

IN
KS

KYLA

MA
MD ME

MI

MN
MO
MS

MT

NC
ND

NE
NH

NJ

NM
NV

NY

OH
OK

OR

PA

RI

SC

SD

TN

TX

UT

VA

VT

WA
WI

WV

WY

0.5

1.0

1.5

2.0

0.2 0.4 0.6
Trump vote share

D
ea

th
s 

pe
r 

10
0 

pe
op

le

Income a a aLow Middle High 67 / 69



Using colors and size to tell a story

You could keep going with this, but there are problems with going
too far for example
ggplot(covid)+

geom_point(aes(x = vote.share, y = deaths.per1000,
color=income.group,
shape=region, size=POP_2021))+

ylab("Deaths per 100 people")+
xlab("Trump vote share")+
guides(color=guide_legend(title="Income"),

size=guide_legend(title="Pop."))+
theme(legend.position = "bottom")

68 / 69



Using colors and size to tell a story
This is a mess and a half. Less is often more.

0.5

1.0

1.5

2.0

0.2 0.4 0.6
Trump vote share

D
ea

th
s 

pe
r 

10
0 

pe
op

le

South West Pop. 1e+07 2e+07

68 / 69



Saving plots
Problem set 0 will walk you through how to put graphs into your
problem sets and write ups.

But sometimes you want to save a plot you’ve made to put into
another paper (say a word document) or to send directly to
someone to make a point or to put on your fridge

Here’s how you would do that that
plot.out <- ggplot(covid)+

geom_text(aes(x = vote.share, y = deaths.per1000,
label=state, color=income.group))+

ylab("Deaths per 100 people")+
xlab("Trump vote share")+
guides(color=guide_legend(title="Income"))+
theme(legend.position = "bottom")

ggsave(plot.out, filename = "covid_by_state.png",
height=3, width=4)

# you'll need to trial and error the
# height and width for your own use

69 / 69



Saving plots
Problem set 0 will walk you through how to put graphs into your
problem sets and write ups.

But sometimes you want to save a plot you’ve made to put into
another paper (say a word document) or to send directly to
someone to make a point or to put on your fridge

Here’s how you would do that that
plot.out <- ggplot(covid)+

geom_text(aes(x = vote.share, y = deaths.per1000,
label=state, color=income.group))+

ylab("Deaths per 100 people")+
xlab("Trump vote share")+
guides(color=guide_legend(title="Income"))+
theme(legend.position = "bottom")

ggsave(plot.out, filename = "covid_by_state.png",
height=3, width=4)

# you'll need to trial and error the
# height and width for your own use

69 / 69


