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A Whang (2010) with multiple equilibria

In this Appendix, we consider a specification of the crisis-signaling game from

Whang (2010), restate equilibrium choice probabilities, and demonstrate that multiple

equilibria can exist under his more general specification. Figure 7 describe the payoffs.

Define εA = (εSA, εV A, εWA, εa) and εB = (εV B, εWB, εCB). We assume εA and εB

are independent and that εi is drawn from a multivariate normal distribution with

mean 0 and variance-covariance matrix Σi. Furthermore, let θ denote the vector of

exogenous parameters of interest, i.e., θ =
(
ā, CB,

(
Si, Vi, W̄i,Σi

)
i=A,B

)
. As before,

Perfect Bayesian equilibria (equilibria, hereafter) for the game can be represented as

choice probabilities, p = (pC , pR, pF ). To aid in the explication of equilibrium choice

probabilities, we introduce the following notation:

SA = S̄A + εSA

VA = V̄A + εV A

WA = W̄A + εWA

a = ā+ εa

CB = C̄A + εCB

WB = W̄B + εWB

VB = V̄B + εV B.

For a fixed vector of choice probabilities, p, define the following:

∆UpF
R = pFWB + (1− pF )VB − CB

∆UpR
SQ,BD = SA − (1− pR)VA − pRa

∆UpR
SQ,SF = SA − (1− pR)VA − pRWA

∆USF,BD = WA − a

The following result characterizes the equilibrium choice probabilities of this game.
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Figure 7: Crisis-signaling game from Whang (2010)

A

B SQ
(S̄A + εSA, S̄B)

ACD
(V̄A + εV A, C̄B + εCB)

BD(
ā + εa, V̄B + εV B

)SF(
W̄A + εWA, W̄WB + εB

)

Challenge Not challenge

ResistNot resist

Fight Not fight

Result 2 (Whang, 2010) An equilibrium p̃ exists, and p̃ is an equilibrium if and only
if it satisfies the following system of equations:

p̃C = 1− Φ2

 E[∆UpR
SQ,BD]√

Var[∆UpR
SQ,BD]

,
E[∆UpR

SQ,SF ]√
Var[∆UpR

SQ,SF ]
,Cor[∆UpR

SQ,BD,∆U
pR
SQ,SF ]

 ≡ g(p̃R; θ),

(11)

p̃F = Φ2

 E[∆USF,BD]√
Var[∆USF,BD]

,
E[−∆UpR

SQ,SF ]√
Var[∆UpR

SQ,SF ]
,Cor

[
∆USF,BD,−∆UpR

SQ,SF

] (g(p̃R; θ))−1 ≡ h(p̃R; θ),

(12)

and

p̃R = Φ

(
E[∆UpF

R ]√
Var[∆UpF

R ]

)
≡ f(p̃F ; θ). (13)

As before fixing a vector of exogenous parameters, θ, equilibria are pinned down by

B’s probability of resisting, where p̃R satisfies f ◦h(p̃R; θ) = p̃R. Given an equilibrium

probability of resisting, p̃R, A’s probabilities of challenging and fighting are defined

using Equations 11 and 12, respectively. Notice that ∆UpF
R , ∆UpR

SQ,BD, ∆UpR
SQ,SF , and

∆USF,BD are endogenous quantities. To fully specify the equilibrium choice probabil-
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ities, the proceeding result states their variances and covariances as functions of the

exogenous parameters, θ. To do so, we maintain the following normalizing assump-

tions from Whang (2010): S̄A = 0, Var [εSA] = 0, C̄B = 0, Var [εCB] = 0, Var [ā] = 1,

and Var [εWB] = 1.

Result 3 Under the normalization assumption, the following hold.

1. Var[∆UpF
R ] = p2

F + (1− pF )2Var[εV B] + 2pF (1− pF )Cov[εV B, εWB]

2. Var[∆UpR
SQ,BD] = (1− pR)2Var[εa] + p2

R + 2pR(1− pR)Cov[εV A, εa]

3. Var[∆UpR
SQ,SF ] = (1− pR)2Var[εa] + p2

RVar[εWA] + 2pR(1− pR)Cov[εV A, εWA]

4. Var[∆USF,BD] = 1 + Var[εWA]− 2Cov[εa, εWA]

5. Cov[∆UpR
SQ,BD,∆U

pR
SQ,SF ] = (1−pR)2Var[εV A]+(1−pR)pRCov[εV A, εWA]+pR(1−

pR)Cov[εV A, εa] + p2
RCov[εa, εWA]

6. Cov[∆UpR
SQ,BD,−∆UpR

SQ,SF ] = (1−pR)Cov[εV A, εWA]+pRVar[εWA]−(1−pR)Cov[εV A, εa]−
pRCov[εa, εWA].

Using Results 2 and 3, it is straightforward to modify the PL, NPL, and CMLE

estimation routines. One additional difficulty arises, however. Currently, we provide

analytical derivatives for optimizers in R. With the additional parameters in ΣA and

ΣB, additional derivatives would need to be provided or automatic differentiation

could be used. We describe the latter approach in Appendix D.

Finally, we provide a numerical example where multiple equilibria arise in this

more general model, even outside the assumptions in Lewis and Schultz (2003).

For payoffs at terminal nodes, we choose the values in the first column of Table

1. To specify the variance-covariance matrices, σA and σB, we choose Var[εV A] = 2,

Var[εWA] = Var[εV B] = 1
2
, Cov[εV A, εa] = Cov[εV A, εWA] = 0, and Cov[εa, εWA] =

Cov[εV B, εWB] = − 7
10

. Under these parameters, there are three equilibria: p̃R ∈

{0.01, 0.63, 0.90}.
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B Regularity and best-response stability

This Appendix contains the formal arguments for two additional results discussed

in the main manuscript. First we define the regularity refinement from Harsanyi

(1973) and van Damme (1996). We use δ(pR; θ) to denote the first derivative of f ◦ h

with respect to pR given parameters θ.

Definition 1 An equilibrium p̃R is regular if δ (p̃R; θ) 6= 1.

With this definition we can now state our result concerning the regularity of equilibria.

Result 4 For almost all θ, all equilibria of the crisis-signaling game are regular.

To prove the result and subsequent ones, it is more straightforward to work with

the function F : (0, 1)× R8 → R such that

F (pR; θ) = f ◦ h(pR; θ)− pR,

where p̃R is an equilibrium if and only if F (p̃R; θ) = 0. We state two intermediary

results before proving result 4. The first is from Jo (2011a) and the second is the

parameterized Transversality Theorem.

Lemma 1 For all θ, limpR→0 f ◦ h(pR; θ) > 0 and limpR→1 f ◦ h(pR; θ) < 1.

Thus, there are no equilibria at the boundaries. In addition, for any fixed θ, there

exists ε > 0 and ν > 0 such that F (ε; θ) > 0 and F (1− ν; θ) < 0

Theorem 1 (Transversality Theorem) Consider an open set X ⊆ Rn. Let L :
X × Rs → Rn be continuously differentiable. Assume that the Jacobian D(x,y)L has
rank n for all (x, y) ∈ X × Rs such that L(x, y) = 0. Then, for almost all y′ ∈ Rs,
the Jacobian DxL has rank n for all x ∈ X such that L(x, y′) = 0.

Proof of Result 4. Note that p̃R is a regular equilibrium if and only if DpRF (pR; θ) 6=

0. To prove Result 4, we verify the conditions of the Transversality condition, where

in our application, L = F and (x, y) = (pR; θ), which means n = 1 and s = 8. First,
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note that F is continuously differentiable, because f ◦ h is the composition of normal

cumulative distribution functions and polynomial functions, and F is defined over the

open interval (0, 1).

Third and finally, we show that D(pR;θ)F (pR; θ) has at least one non-zero element

(i.e., rank 1) when F (pR; θ) = 0. To do this, we show a stronger result: for all (pR; θ),

D(pR;θ)F (pR; θ) 6= 0. To see this, consider DW̄B
F (pR; θ). By Result 1, the functions g

and h are constant in parameter W̄B, that is, DW̄B
g(pR; θ) = DW̄B

h(pR; θ) = 0. Then

we have

DW̄B
F (pR; θ) = DW̄B

f ◦ h(pR; θ)

= DW̄B
Φ

(
h(pR; θ)W̄B + (1− h(pR; θ))VB − CB

h(pR; θ)

)
= DW̄B

Φ

(
W̄B +

(1− h(pR; θ))VB − CB
h(pR; θ)

)
= φ

(
W̄B +

(1− h(pR; θ))VB − CB
h(pR; θ)

)
6= 0,

which implies D(pR;θ)F (pR; θ) 6= 0 as required.

Although the regularity refinement does not generically reduce the number of equi-

libria, showing that all the equilibria are regular is advantageous for applied empirical

research. Regular equilibria can be implicitly expressed as continuous functions of pa-

rameters. This property is particularly important in empirical analyses: if we uncover

noisy, but sufficiently accurate estimates of θ, then equilibrium choice probabilities

will be close to their true values as well. In addition, comparative statics (predicted

probabilities) on regular equilibria will be well behaved, i.e., the equilibrium will not

vanish if we vary the data or parameters by some small amount.

Our next result focuses on best response iteration. Before stating the result, we

define best-response stable and best-response unstable equilibria.
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Definition 2 An equilibrium p̃R is best-response stable if there exists ε > 0 such
that for all p0

R ∈ (p̃R − ε, p̃R + ε) the sequence

pkR = f ◦ h(pk−1
R ; θ), k ∈ N

converges to p̃R.

The next definition introduces best-response unstable equilibria, which is not simply

the negation of Definition 2.

Definition 3 An equilibrium p̃R is best-response unstable if there exists ε > 0 such
that for all p0

R ∈ (p̃R − ε, p̃R + ε), with p0
R 6= p̃R, the sequence

pkR = f ◦ h(pk−1
R ; θ), k ∈ N

leaves the interval (p̃R− ε, p̃R + ε) at least once. That is, there exists n ∈ N such that
pnR /∈ (p̃R − ε, p̃R + ε)

With these definitions, we are now ready to state Results 5.

Result 5 If all equilibria are regular, then following hold:

1. There is a finite number of equilibria.

2. If there are multiple equilibria, then there exists a best-response unstable equi-
librium.

To prove Result 5, we need an intermediate result, that is standard in nonlinear

dynamics and fixed point iteration. See Theorem 6.5 in Holmgren (1994).

Theorem 2 Consider an equilibrium p̃R. If |δ(p̃R; θ)| < 1, then p̃R is best-response
stable. If |δ(p̃R; θ)| > 1, then p̃R is best-response unstable.

To end this Appendix, we prove Result 5.

Proof of Result 5(1). By assumption all equilibria are regular, which impliesDpRF (p̃R; θ) 6=

0 for all p̃R such that F (p̃R; θ) = 0. Then the Implicit Function Theorem implies that

every equilibrium p̃R is locally isolated. Because F is continuous, it has closed level

sets, so the set of equilibria is closed. Because equilibria fall within the interval (0, 1),

the set of equilibria is bounded, and therefore compact. As a compact set of locally

isolated points, the equilibrium set is finite.
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Proof of Result 5(2). Assume all equilibria are regular. By Result 5(1), we can write

the set of equilibria as {p̃[1], . . . , p̃[k]} where k is the number of equilibria. Order the

set such that a < b implies p̃[a] < p̃[b]. By assumption, k ≥ 2, and we claim that p̃[2]

is best-response unstable. To do so, the proof consists of two steps. In step 1, we

prove that δ(p̃[1]; θ) < 1. In step 2, we prove that δ(p̃[2]; θ) > 1, which, by Theorem

2, implies that p̃[2] is best-response unstable.

Step 1: Suppose not. That is, suppose δ(p̃[1]; θ) ≥ 1. By regularity, δ(p̃[1]; θ) > 1.

Because F is continuously differentiable and DpRF = δ(p̃
[1]
R ; θ)− 1, there exists ε > 0

such that F is strictly increasing on the interval (p̃
[1]
R − ε, p̃

[1]
R ). Because F (p̃

[1]
R ; θ) = 0,

this implies that there exists a p′R ∈ (p̃R − ε, p̃[1]
R ) such that F (p′R; θ) < 0. By Lemma

1, there exists ν ∈ (0, p′R) such that F (ν; θ) > 0. Then the Intermediate Value

Theorem Implies that there exists a p̃R ∈ (ν, p′R) such that F (p̃R; θ) = 0, but this

contradicts the assumption that p̃
[1]
R is the smallest equilibrium. Hence, we conclude

that δ(p̃[1]; θ) < 1

Step 2: Suppose not. That is, suppose δ(p̃[2]; θ) ≤ 1. Because all equilibria are

regular, δ(p̃
[2]
R ; θ) < 1, implying DpRF (p̃

[2]
R ; θ) < 0. This, along with the facts that F is

continuously differentiable and F (p̃
[2]
R ; θ) = 0, implies there exists (arbitrarily small)

ε > 0 such that F (p̃
[2]
R − ε; θ) > 0.

In Step 1, we showed that δ(p̃
[1]
R ; θ) < 1. Because F (p̃

[1]
R ; θ) = 0, there exists

(arbitrarily small) ν > 0 such that F (p̃
[1]
R + ν; θ) < 0 because F is continuously

differentiable. So we have F (p̃
[2]
R − ε; θ) > 0 and F (p̃

[1]
R + ν; θ) < 0. Then by the

Intermediate Value Theorem there exists an equilibrium p̃′R such that

p̃
[1]
R + ν < p̃′R < p̃

[2]
R − ε.

But this contradicts the assumption that p̃
[2]
R is the second smallest equilibrium. Thus,

we conclude δ(p̃
[2]
R ; θ) > 1. As such, p̃

[2]
R is best-response unstable by Theorem 2.
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C Further Monte Carlo results

C.1 Multiple equilibria

This appendix contains additional results from the Monte Carlo experiment where

the data are generated under parameters that are consistent with multiple equilibria.

A single covariate determines the equilibirum selection. The parameter values used

to generate the data can be found in Table 1. Here we consider the estimators’ bias,

variance, rate of convergence, and computation time. Root mean-squared error is

presented in the main text.

Figure 8: Bias in signaling estimators with multiple equilibria.
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Figure 9: Variance in signaling estimators with multiple equilibria.
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Figure 10: Convergence rates in signaling estimators with multiple equilibria.
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Figure 11: Computational time in signaling estimators with multiple equilibria.
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C.2 Unique equilibrium

This appendix contains additional results from the Monte Carlo experiment where

the data are generated from a version of the game with a unique equilibrium. The

parameter values used to generate the data can be found in the final column of Table

1. Here we consider the estimators’ bias, variance, computation time, and rate of

convergence.

Figure 12: Bias in signaling estimators with a unique equilibrium.
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Figure 13: Variance in signaling estimators with a unique equilibrium.
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Figure 14: Computational time in signaling estimators with a unique equilibrium.
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Figure 15: Convergence rates in signaling estimators with a unique equilibrium.
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C.3 Best-response stability

The best performing solutions make use of best response functions, which begs the

question: How sensitive are the estimators to best-response unstable equilibria? To

answer this question, we conduct another Monte Carlo experiment. Here, we assume

payoffs are generated as in the multiple setting in Table 1, and the equilibrium selec-

tion rule follows the left-hand graph in Figure 2. Let q ∈ [0, 1] denote the percentage

of unstable equilibria. For q · D dyads, xd is draw from a uniform distribution over

the interval (1
3
, 2

3
). For the remaining D − q ·D observations, xd is drawn uniformly

from the intervals (0, 1
3
) or (2

3
, 1) with equal probability. Using Theorem 2, the mid-

dle equilibrium, i.e., the one selected when xd ∈ (1
3
, 2

3
), is unstable, while the other

equilibria are best-response stable. As we vary q from 0 to 1, we analyze how the

estimators’ performance varies as the data are generated with a larger proportion of

best-response unstable equilibria. In this experiment, we set D = 200 and T = 1000,

which means there is a large amount of data as to better isolate the effects of unstable

equilibria. For all values of q, we draw xd, select the corresponding equilibria, and

estimate the model 1, 000 times. We expect the PL and NPL to perform worse as q

approaches 1.1

Figure 16 summarizes the results, where we vary the percentage of unstable equi-

libria along the horizontal axis and plot log RMSE along the vertical axis. Unsurpris-

ingly, the NPL performs much worse in terms of RMSE as more data are generated

from the unstable equilibrium. The PL, tML, and CMLE all get slightly worse as

this proportion increases, but this effect is far less pronounced. Despite the fact that

the NPL is designed to struggle here, it still outperforms the PL when less than 40%

of the data are from unstable equilibria. Of further note, both the PL and NPL

still outperform the tML across the board, despite their reliance on best-response

1Following results from Kasahara and Shimotsu (2012) we check that the spectral radius of the
Jacobian of the best-response function is greater than 1 under these conditions. We find that the
NPL should struggle in all situations where q ≥ 0.01.
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Figure 16: RMSE in signaling estimators with more unstable equilibria.
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iteration.

Beyond the potential for statistical problems, we also want to consider the compu-

tational issues that arise when unstable equilibria dominate in the data. This trend

is illustrated in Figure 17, where horizontal axis is the proportion of observations

with unstable equilibria and the vertical axis is the proportion of successful Monte

Carlo iterations. Notice, convergence rates of all estimators, besides the PL, decrease

once the proportion of unstable equilibria approaches 60–80%. Thus, conditional on

converging, the estimators return results with fairly reasonable RMSE even with a

large proportion of unstable equilibria. They are all generally less likely to converge

when unstable equilibria permeate the data, however.

C.4 Multivariable Monte Carlo

In this section we consider a different Monte Carlo experiment designed to bet-

ter capture real world situations. Specifically, we use our application to economic

15



Figure 17: Convergence rates in signaling estimators with unstable equilibria.
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sanctions data to construct an experiment with many variables that appear across

different utilities.

To build the experiment we use the same specification and independent variables

as the economic sanctions application above. We then take the CMLE estimates from

Table 3 and fix them as the true parameter values. Using these parameters and the

original independent variables we generate a new dependent variable (of length 120

for each dyad) for each Monte Carlo simulation and refit the model using tML, PL,

NPL, and CMLE.2 For each parameter we then compute the root mean-squared error

(RMSE).

Table 4 shows the relative performance of each or our proposed methods to the

tML. Here, values less than one mean that our estimator does better than the tra-

ditional method, while values greater than one mean than tML performed better on

estimating that parameter. Values close to zero mean that our approach does a lot

better than the tML. All cases where the tML does better are bolded, which happens

2Note that in the case of CMLE, this is equivalent to using a parametric bootstrap to build
standard errors.
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in only three cases out of sixty (about 5%).

Overall, the PL has a little trouble with a few parameters in B’s utilities, which

is consistent with our other Monte Carlo results. The NPL and CMLE both do very

well compared to the tML. The last row in Table 4 shows the relative improvement

in the multivariate RMSE, where we see that all three of our approaches are better

than the tML in this experiment.

Table 4: Relative RMSE of Estimates Compared to tML

PL NPL CMLE

SA: Econ. DepA 0.48 0.87 0.63
SA: DemA 0.18 0.36 0.37

SA: Contiguity 0.11 0.06 0.05
SA: Alliance 0.17 0.20 0.19
VA: Const. 0.79 0.35 0.27
VA: CostsA 0.59 0.40 0.33
CB: Const. 0.75 0.51 0.45

CB: Econ. DepB 0.35 0.28 0.21
CB: CostsB 0.42 0.26 0.21

CB: Contiguity 1.43 0.14 0.11
CB: Alliance 0.34 0.37 0.31
W̄A: Const. 0.03 0.03 0.03

W̄A: Econ. DepA 0.99 1.01 0.40
W̄A: DemA 0.07 0.23 0.25

W̄A: Cap. Ratio 0.22 0.20 0.11
W̄B: Const. 1.18 0.81 0.68
W̄B: DemB 0.43 0.35 0.18

W̄B: Cap. Ratio 0.80 0.51 0.34
ā: Const. 0.03 0.04 0.03
ā: DemA 0.09 0.26 0.28

Multivariate RMSE 0.80 0.55 0.46
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D Implementation details

In our economic sanctions application we fit the CMLE using the program IPOPT

(Interior Point OPTimizer), which is an open-source optimizer designed to handle

large scale problems (Wächter and Biegler 2006). In trials, IPOPT has better perfor-

mance properties than other optimizers such as sequential quadratic solvers (found in

Python’s scipy.optimize module), a version of the Augmented Lagrangian Method

(from R’s alabama package), and alternative interior-point methods (MATLAB’s

fmincon).

The main difficulty in using interior-point methods is that they require an accurate

second derivative of the Lagrangian associated with the problem in Equation 10.

We find that finite difference approximations are insufficient. As such, we use the

program ADOL-C, software for algorithmic differentiation (AD) (Griewank, Juedes

and Utke 1996; Walther and Griewank 2012), to precisely compute the Hessian. The

AD software allows us to only supply the log-likelihood and constraint function from

Equation 10. The AD program repeatedly applies the chain rule to our functions

to compute first- and second-order derivatives. In all uses of the CMLE, we use

IPOPT and ADOL-C within Python 2.7.15 on Ubuntu 18.04 by calling the pyipopt

module developed by Xu (2014) and the pyadolc module developed by Walter (2014),

respectively.

D.1 Standard Errors

Following current practices, the tML standard errors are from the outer product

of gradients estimator (sometimes called the BHHH estimator). Asymptotic standard

errors for the other approaches are provided below.
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The asymptotic standard errors for the PL estimates follow from standard results

on two-step maximum likelihood estimation (e.g., Murphy and Topel 1985), such that

V̂ar(β̂PL) = Ω̂−1
β + Ω̂−1

β Ω̂pΣ̂Ω̂T
p Ω̂−1

β .

Here Ω̂β and Ω̂p are outer product of gradients estimators and Σ̂ is the estimated

first-stage covariance matrix, such that

Ω̂β = JβPL(β̂PL|p̂R, p̂F, Y,X)TJβPL(β̂PL|p̂R, p̂F, Y,X)

Ω̂p = JβPL(β̂PL|p̂R, p̂F, Y,X)TJpR,pF

PL (p̂R, p̂F|β̂PL, Y,X)

Σ̂ = V̂ar(p̂R, p̂F),

where JxPL is the Jacobian of the PL likelihood with respect to x. In our applications,

we use a non-parametric bootstrap to produce Σ̂, which is the covariance matrix of

the first-stage (random forest) estimates.

Aguirregabiria and Mira (2007) provide asymptotic standard errors for the NPL

estimates that converges after n iterations as

V̂ar(β̂NPL) =
(

Ω̂β + Ω̂p(I− ψ̂T
p )−1ψ̂β

)−1

Ω̂β

(
Ω̂β + ψ̂T

β (I− ψ̂p)−1Ω̂T
p

)−1

.

Here Ω̂β and Ω̂p are still outer product of gradients estimators, but they are now given

as

Ω̂β = JβPL(β̂NPL|p̂R,n, p̂F,n, Y,X)TJβPL(β̂NPL|p̂R,n, p̂F,n, Y,X)

Ω̂p = JβPL(β̂NPL|p̂R,n, p̂F,n, Y,X)TJpR,pF

PL (p̂R,n, p̂F,n|β̂NPL, Y,X),

while ψ̂p and ψ̂β are the Jacobians of the best-response function with respect to

(pR,pF) and β, respectively, and evaluated at the NPL estimates.
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Finally, the asymptotic standard errors for the CMLE are computed using Silvey

(1959, Lemma 6), such that

V̂ar
((
β̂, p̂R

)
CMLE

)
=

Ĥ + ω̂T ω̂ − ω̂T

−ω̂ 0


−1

1,2,...,D+`

.

Here, Ĥ is the Hessian of the CMLE’s log-likelihood with respect to the full parameter

vector, evaluated at the estimates, ` is the length of β, and

ω̂ = J
(β,pR)
f◦h

(
(p̂R, β̂)CMLE|Y,X

)

is the Jacobian of the CMLE’s equilibrium constraint with respect to the full param-

eter vector and evaluated at the estimates. Note that the total size of the matrix is

2D + `, while the covariance matrix of the full parameter vector is composed of only

the first D + ` rows and columns. The remaining entries relate to the D Lagrange

multipliers used to solve the constrained optimization problem.
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E Traditional ML and starting values

In this appendix, we are interested in the effects that starting values have on the

tML’s performance. To do this, we focus on two questions: why has past work found

that the tML is consistent when the data are generated by a unique equilibrium, and

can the tML be improved by just giving it better starting values?

Regarding the first question, our Monte Carlo experiments demonstrate that the

tML may not be consistent even when there is a unique equilibrium in the signaling

game that is generating the data. The reason such problems arise is that the max-

imization routine will oftentimes evaluate the likelihood function at a guess of the

parameters where multiple equilibria arise. In this case, the traditional approach will

select an equilibrium in an ad-hoc fashion, which may encourage the maximization

routine to move away from the correct parameters. This may be surprising as both

Jo (2011a) and Bas, Signorino and Whang (2014) conduct similar Monte Carlo ex-

periments and conclude that the tML performs well when the data were generated

with parameters that admit a unique equilibrium.3

To the best of our knowledge, the differences arise from starting values. In our

study, starting values for θ were drawn from a standard uniform distribution. In

Jo (2011a), the starting values are the true values from the data generating process

(Jo 2011b). Although we were not able to locate replication materials from Bas,

Signorino and Whang (2014), we do conduct an additional Monte Carlo experiment

to investigate the possibility that differences in starting values lead to different results.

To do this, we reproduce our Monte Carlo experiments from the main text, but now

we use different starting values for the tML. First, we follow Jo (2011a) and use the

true data generating values as starting values to see if this accounts for the differences

3Jo (2011a, p. 357) writes “It is easy to see that when there is a unique equilibrium, the estimates
get closer to their true values as the number of observations increases.” Bas, Signorino and Whang
(2014, p. 26) write “All coefficients on average are estimated very close to the true parameter values,
and the accuracy of the estimates increases as the sample size increases.”
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Figure 18: RMSE with a unique equilibrium and different starting values.
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we observed between our results and hers. Second, we use the PL estimates as starting

values to explore if our Monte Carlo results are driven by choices over starting values.

The motivation for this second question is based on the fact that we use the PL as

a launching point for the other methods we consider. The NPL builds on the PL by

construction, and we use the PL estimates as starting values for the CMLE in order

to improve the stability of the constrained optimization problem. These approaches

naturally raise the question of whether the tML can be improved by starting it at the

PL estimates.

Figure 18 graphs the logged RMSE of the estimation procedures as we vary the

number of dyads D and the number of observations T . In a similar manner, Figure

19 reports the logged RMSE for an experiment where there are multiple equilibria

at the true parameters. Note, that the PL, NPL, and CMLE results in these figures

are identical to the results reported in Figures 4 and 3, respectively. There are three

major takeaways.
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Figure 19: RMSE with multiple equilibria and different starting values.
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First, starting the tML procedure at the true values greatly improves the tML’s

performance. This benefit is most pronounced when there is a unique equilibrium at

the true values. This explains the consistency findings from Jo (2011a) and Bas, Sig-

norino and Whang (2014). However, these values are not known a priori in practice,

which limits the usefulness of this result.

Second, starting the tML procedure at the PL estimates offers some improvement

over the results in the main text. However, the improvements are not enough to make

the tML a justifiable method. In practice, the tML only notably better than the PL

when it has: (i) informative starting values, (ii) there is a unique equilibrium in the

data generating game, and (iii) there are many within-game observations. If any of

these three conditions fails, the PL tends to be at least as well and is sometimes

better than the tML while the NPL is almost always better and the CMLE is always

better. Given that we can never know if condition (ii) holds, the tML is never a good

choice.
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Third, if all three of the above conditions hold, the CMLE is a better choice than

the tML with PL starting values. The only approach that rivals the CMLE when

there are multiple within-game observations is when conditions (ii) and (iii) hold and

the procedure is started at the true parameter values. Of course, we never have the

true values to use as a starting point, and we still never know if condition (ii) holds.

As such, our main conclusions hold even when we try to improve the tML by starting

it at the PL values.
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Figure 20: Log-likelihood function with an imposed selection rule
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F Additional problems with traditional ML

F.1 Discontinuous likelihood

As mentioned in the main text, ad hoc equilibrium selection is one possible solution

to the tML’s troubles. However, such a modification introduces discontinuities into

the tML’s log-likelihood function. We demonstrate this in Figure 20. Here, we graph

the log-likelihood as a function of the parameter β̂1
W̄B

(the true value is β1
W̄B

= −2.9),

where data are generated using the values in Table 1, column 1, the equilibrium

selection in Figure 2, and D ∈ {1, 10} with T = 200.

The main thing to note here is that not only are there discontinuities in the log-

likelihood, but also that the number of discontinuities is increasing in D. In many

international relations studies, the number of dyads under consideration can be in

the hundreds or thousands. Having a likelihood function with that many jumps in

it is extremely difficult to optimize using ordinary means. Global methods are a

possibility here, but the computational cost is cost-prohibitive compared to the PL,

NPL, or CMLE.
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Table 5: tML with different solvers and starting values

tML tML tML
Newton Solver Select Largest Eq. PL start values

Model 1 Model 5 Model 6

ā: Const. −0.56 −0.76∗ −2.62∗

(0.77) (0.14) (0.11)
ā: DemA −0.00 0.06∗ −0.03

(0.01) (0.01) (0.04)

Log L -4102.76 -4302.08 -3938.73
D × T 418× 120 418× 120 418× 120

Notes: ∗p < 0.05

Standard Errors in Parenthesis

F.2 Sensitivity to implementation choices

Table 5 illustrates the sentivity of the tML routine to different implementation

choices. In the first column, we reprint Model 1 from the main text where the tML

routine uses a Newton solver to compute an equilibrium for each dyad d and each guess

of the parameter value θ. In Model 5, we change the equilibrium selection method

used in the tML. Here, for each guess of the parameter values and for each dyad,

we compute all equilibria and choose the equilibrium that maximizes B’s probability

of resisting, i.e., p̃dR. Starting values and other implementation choices for these

routines were identical. In Model 6, we use the equation solver from Model 1, but we

change the starting values for the optimization procedure, where starting values were

those from the CMLE estimates in the main text.

The main thing to note in Table 5, is that implementation choices lead to very

different substantive results. In the first column, the model finds no evidence for

audience costs of any kind. In the second column, both the constant and democracy

are significant, while third model is more similar to the results from our proposed

approaches, but still has a worse fit (in terms of log-likelihood value) than either the

NPL or CMLE.
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G Additional Comparative Statics

We analyze additional comparative statics on the U.S.–China–1990 dyad. Figure

21 plots the conditional probability that U.S. fights, pF , as a function of its audience

costs. The U.S. is more likely to fight as its audience cost increase (become more

negative). Figure 22 plots the conditional probability that China resists a U.S. threat,

pC , as a function of U.S. audience costs. It shows that China is less likely to resist as

the U.S. has larger (more negative) audience costs. Figure 23 plots the probability

that we observe sanctions in equilibrium as a function of U.S. audience costs. It

shows an inverse-U shaped relationship. When U.S. audience costs are very small

(close to zero), sanctions are very unlikely as the U.S. will back-down at the final

decision node. When U.S. audience costs are very large (very negative), sanctions are

less likely as China is likely to concede after observing a U.S. threat. When audience

costs are moderate, not only is the U.S. not likely to back down but China is also

likely to resist threats from the U.S., leading to a higher probability of sanctions.
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Figure 21: Effects of audience costs on the U.S. and China dyad, 1991–2000
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Caption: For each fixed ā, we compute all equilibria in the USA-CHN-1990 directed dyad given
the results in Table 3, Model 4. We then plot equilibrium probability that the U.S. imposes sanc-
tions conditional on having threatened to do so, pF . The orange diamond denotes the equilibrium
estimated using the CMLE; there is a unique equilibrium for all displayed values of ā.
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Figure 22: Effects of audience costs on the U.S. and China dyad, 1991–2000
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Caption: For each fixed ā, we compute all equilibria in the USA-CHN-1990 directed dyad given
the results in Table 3, Model 4. We then plot equilibrium probabilities of resisting conditional on
the US challenging, pR. The orange diamond denotes the equilibrium estimated using the CMLE;
there is a unique equilibrium for all displayed values of ā.
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Figure 23: Effects of audience costs on the U.S. and China dyad, 1991–2000
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Caption: For each fixed ā, we compute all equilibria in the USA-CHN-1990 directed dyad given
the results in Table 3, Model 4. We then plot the probability of observing sanctions in equilibrium,
pCpRpF . The orange diamond denotes the equilibrium estimated using the CMLE; there is a unique
equilibrium for all displayed values of ā.
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H Decade-level variables

In this section, we demonstrate that the independent variables we consider the

economic sanctions application experience little variation over the course of each

country- or dyad-decade. For country-level covariates, we only consider polity2 scores

for each state. All other variables are dyadic. In Figure 24, we show that these

variables experience little change over our aggregation periods we plot each variables

year-to-year deviation from its decade mean. For all variables, the mean and median

values of these distributions are centered at zero and there is very little deviation

from the spikes at zeros. Overall, we conclude that the decade-level aggregation for

the independent variables is reasonable.

Figure 24: Histograms of within-decade deviations from the mean
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I Robustness checks

I.1 Quarterly Data

Table 6 considers the results of the PL, NPL, and CMLE when we aggregate our

dependent variable at the quarterly rather than monthly level. Here xd continues to

be dyadic-covariates aggregated to the decade level, and yd continues to reflect the

distribution over outcomes over each decade. The only difference is that the out-

comes are now measured every at quarter year intervals. This check ensures that our

audience cost results are not driven by either having too many status quo outcomes

or by ignoring situations where an episode lasts multiple months.

Table 6: Economic sanctions application – Quarterly Play

PL NPL CMLE
Model 7 Model 8 Model 9

ā: Const. −2.23∗ −2.23∗ −2.32∗

(0.10) (0.16) (0.11)
ā: DemA 0.00 0.03 0.01

(0.08) (0.10) (0.04)

Log L -3208.74 -3180.23 -3177.05
D × T 418× 40 418× 40 418× 40

Notes: ∗p < 0.05

Standard Errors in Parenthesis

I.2 Relaxing political relevance

Table 7 considers the results of PL and NPL estimation on a larger sample. The

CMLE struggled to converge here and is omitted. This sample uses a more relaxed

definition of political relevance to better match WMK. Here, any dyad-decade is in-

cluded so long as a sanctions threat exists in any of the three dyad decades considered

in the data. We focus on just the audience cost parameters, as they represent our

substantive interest.
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Table 7: PL and NPL estimates with WMK’s definition of Politically Relevant

PL NPL
Model 10 Model 11

ā: Const. −2.86∗ −2.89∗

(0.11) (0.11)
ā: DemA 0.01 0.02

(0.02) (0.04)

Log L -4582.50 -4425.01
D × T 1012× 120 1012× 120

Notes: ∗p < 0.05

Standard Errors in Parenthesis

I.3 Different levels of aggregation

In this section, we consider how our main results change with different levels of

aggregation. Recall that in our main analysis we follow Whang, McLean and Kuberski

(2013) and consider decade-level data. In that data, a single observation d is a set

of decade-level covariates xd and a distribution over outcomes yd that describe 120

months of interaction. We now try different levels of aggregation to ensure that our

audience cost results are not driven by these aggregation choices. As before, the

coefficients of the non-audience cost parameters are suppressed for space.

Table 8 considers the results of the PL, NPL, and CMLE when the variables are

aggregated to the 5 year marks. Here, each observation d is a set of five-year-level

covariates xd and yd now describes the distribution of outcomes over T = 60 months

of interaction. In terms of sign, significance, and general magnitude the results hold.

The next situation we consider it in Table 9, where we aggregate to the dyad-year

level. Here, each observation d is a set of year-level covariates xd and yd now describes

the distribution of outcomes over T = 12 months of interaction. In terms of sign,

significance, and general magnitude the results hold.

As an additional check we also consider a more ordinary dyad-year analysis in

Table 10. Here, each observation d is once again aggregated to the dyad-year-level,

but now we assume that there is only a single play of the game within each year
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Table 8: Economic sanctions application: Dyad-5 years

PL NPL CMLE
Model 12 Model 13 Model 14

ā: Const. −2.43∗ −2.44∗ −2.48∗

(0.15) (0.17) (0.13)
ā: DemA −0.02 −0.01 −0.04

(0.10) (0.08) (0.08)
Log L -3624.09 -3608.93 -3606.40
D × T 479× 60 479× 60 479× 60

Notes: ∗p < 0.05

Standard Errors in Parenthesis

Table 9: Economic sanctions application: Dyad-year (T = 12)

PL NPL CMLE
Model 15 Model 16 Model 17

ā: Const. −1.89∗ −1.90∗ −1.88∗

(0.41) (0.39) (0.10)
ā: DemA −0.02 −0.03 −0.02

(0.31) (0.22) (0.06)
Log L -2712.68 -2717.31 -2715.36
D × T 577× 12 577× 12 577× 12

Notes: ∗p < 0.05

Standard Errors in Parenthesis

(T = 1). This means that yd now describes just a single discrete outcome, rather than

a distribution over observed outcomes within the aggregation period. This analysis

requires us to use the expanded definition of political relevance from Appendix I.2

and does not allow for using the CMLE. Additionally, reducing yd to just record a

single event per year introduced what appears to be separation bias in the estimates

related to VA. To avoid any numerical issues, we drop the offending estimates and

bootstrap the standard errors for this robustness check. As before, the coefficients on

audience costs are effectively unchanged.
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Table 10: Economic sanctions application – Dyad-year (T=1)

PL NPL
Model 18 Model 19

ā: Const. −1.97∗ −1.78∗

(0.10) (0.34)
ā: DemA 0.10 0.09

(0.11) (0.33)
Log L -2648.23 -2388.09
D × T 9651× 1 9651× 1

Notes: ∗p < 0.05

Bootstrapped standard errors in parenthesis
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J R code

Below we list the basic code required to implement the tML, PL, and NPL. The

PL and NPL are also available in the R package sigInt. The complete code used to

replicate this entire paper can be found in the replication archive.

1 ## This file contains code for the EQ constraint in Jo (2011).

2 ## It also includes functions for generating data and functions

3 ## necessary to implement the PL and NPL estimators.

4 ## Additional packages: pbivnorm, rootSolve, maxLik

5 ## NOT INCLUDED: gradients and standard errors.

6 ## These can be found in the replication archive.

7

8 ################## HELPER FUNCTIONS ##################

9 vec2U.regr <- function(x,regr){

10 ## Function for converting parameters and regressors to

11 ## utilities over outcomes

12 ## INPUTS:

13 ## x: vector of regression parameters (betas) in the order SA, VA, CB, barWA,

barWB, bara, VB

14 ## regr: a list of regressor matrices, one for each utility in the same order

as x

15 ## OUTPUTS:

16 ## param: A list of utilities in the same order as regr.

17 ## Each element of this list is a vector of length equal

18 ## to the number of games.

19

20

21 ## create indices to appropriately sort the elements of x

22 ## into the correct outcomes.

23 idx0 <- lapply(regr, ncol)

24 idx0 <- sapply(idx0, function(x){if(is.null(x)){0}else{x}})

25 idx1 <- cumsum(idx0)

26 idx0 <- idx1-idx0+1

27 idx <- rbind(idx0, idx1)

28 idx[,apply(idx, 2, function(x){x[1]>x[2]})] <- 0

29 idx[,apply(idx, 2, function(x){x[1]==x[2]})] <- rbind(0,idx[1,apply(idx, 2,

function(x){x[1]==x[2]})] )

30

31 indx <- list(idx[1,1]:idx[2,1],

32 idx[1,2]:idx[2,2],

33 idx[1,3]:idx[2,3],

34 idx[1,4]:idx[2,4],

35 idx[1,5]:idx[2,5],

36 idx[1,6]:idx[2,6],

37 idx[1,7]:idx[2,7])

38 indx <- lapply(indx,

39 function(x){

40 if(0 %in% x){

41 return(x[length(x)])

42 }else{
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43 return(x)

44 }

45 }

46 )

47

48

49 ## Create the utilities using simple X * beta

50 param <- list(barWA = regr[[4]] %*% x[indx[[4]]],

51 barWB = regr[[5]] %*% x[indx[[5]]],

52 bara = regr[[6]] %*% x[indx[[6]]],

53 VA = regr[[2]] %*% x[indx[[2]]],

54 VB = regr[[7]] %*% x[indx[[7]]],

55 SA = regr[[1]] %*% x[indx[[1]]],

56 CB = regr[[3]] %*% x[indx[[3]]],

57 sig = 1)

58 param <- lapply(param, as.numeric)

59 return(param)

60 }

61

62 ## Functions from Jo (2011)

63 cStar.jo <- function(p, U){

64 ## returns c*, a value that appears frequently

65 ## p are the equilibrium probabilities p_R

66 return((U$SA - (1-p)*U$VA)/p)

67 }

68

69

70 g.jo <- function(c,U){

71 ## returns p_C for a given value of c (from cStar.jo, above) and U

72 v1 <- (c-U$barWA)/U$sig

73 v2 <- (c-U$bara)/U$sig

74 return(1 - pnorm(v1)*pnorm(v2))

75 }

76

77

78 h.jo <- function(c, U){

79 ## returns p_F for a given value of c (from cStar.jo, above) and U

80 d1 <- (U$barWA - U$bara)/(U$sig*sqrt(2))

81 d2 <- (U$barWA - c)/(U$sig)

82 return(pbivnorm(d1, d2,rho=1/sqrt(2)))

83 }

84

85 f.jo <- function(p, U){

86 ## returns p_R for a given value of p_F (from h.jo, above) and U

87 return(pnorm((p*U$barWB + (1-p)*U$VB - U$CB)/(U$sig*p)))

88 }

89

90 const.jo <- function(p, U){

91 ## Function to compute the equilibirum constraint p_R - f(h(p_R)

92 c <- cStar.jo(p,U)

93 g <- g.jo(c,U)

94 g[g<=.Machine$double.eps] <- .Machine$double.eps ##numeric stability

95 j <- h.jo(c,U)/g

96 return(p - f.jo(j,U))
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97 }

98

99

100 eqProbs <- function(p, U,RemoveZeros=F){

101 ## This function generates p_C and p_F from equilibrium

102 ## probability p_R

103 ## INPUTS:

104 ## p: p_R (the equilibrium)

105 ## U: Utilities (from vec2U.regr, above)

106 ## RemoveZeros: Boolean, should the function check for numeric issues?

107 ## OUTPUTS: A matrix of M by 3 (M is the number of games)

108

109 ck <- cStar.jo(p,U)

110 pC <- g.jo(ck, U)

111 if (RemoveZeros){

112 pC[pC <= .Machine$double.eps] <- .Machine$double.eps

113 }

114 pF <- h.jo(ck, U)/pC

115 return(cbind(p, pC, pF))

116 }

117

118 ################## Objective functions ##################

119

120 QLL.jo <- function(x,PRhat,PFhat,Y,regr){

121 ## Pseudo-log-likelihood for two step method

122 ## INPUTS:

123 ## x: vector of current parameter guesses in order (beta,p)

124 ## PRhat: First stage estimates of p_R

125 ## PFhat: First stage estimates of p_F

126 ## Y: 4 by M matrix of tabulated outcomes

127 ## regr: list of regressors for each utility function

128 ## OUTPUTS:

129 ## QLL: negative of the PLL for this set of parameters

130

131 U <- vec2U.regr(x,regr)

132 PR <- f.jo(PFhat, U)

133 PR[PR<=.Machine$double.eps] <- .Machine$double.eps

134 PC <- g.jo(cStar.jo(PRhat,U),U)

135 PC[PC<=.Machine$double.eps] <- .Machine$double.eps

136 PF <- h.jo(cStar.jo(PRhat,U),U)/PC

137

138 OUT <- cbind(1-PC,

139 PC*(1-PR),

140 PC*PR*PF,

141 PC*PR*(1-PF))

142 OUT[OUT<=sqrt(.Machine$double.eps)] <- sqrt(.Machine$double.eps)

143 QLL <- sum(log(t(OUT))*Y)

144 return(-QLL)

145 }

146

147

148 LL.nfxp <- function(x, Y,regr){

149 ## Log-likelihood function for the Nested Fixed Point

150 ## INPUTS:
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151 ## x: vector of current parameter guesses in order (beta,p)

152 ## Y: 4 by M matrix of tabulated outcomes

153 ## regr: list of regressors for each utility function

154 ## OUTPUTS:

155 ## LL: negative of the log-likelihood for this set of parameters

156

157 M <- dim(Y)[2]

158 U <- vec2U.regr(x,regr)

159

160 ## compute AN equlibrium

161 f <- function(p){const.jo(p,U)}

162 grf <- function(p){diag(1-eval_gr_fh(p,U))}

163 out <- multiroot(f, rep(.5, M), jacfunc=grf, jactype="fullusr",

164 ctol=1e-6,rtol=1e-6,atol=1e-6)

165

166 EQ <- eqProbs(out$root,U)

167 OUT <- cbind(1-EQ[,2],

168 EQ[,2]*(1-EQ[,1]),

169 EQ[,2]*EQ[,1]*EQ[,3],

170 EQ[,2]*EQ[,1]*(1-EQ[,3]))

171 OUT[OUT<=sqrt(.Machine$double.eps)] <- sqrt(.Machine$double.eps)

172 LL <- sum(log(t(OUT))*Y)

173 return(-LL)

174 }

175

176 npl <- function(pl.hat, Phat, Y, regr, maxit=500, tol=1e-5){

177 ## Estimates the NPL model starting at PL estimates.

178 ## INPUTS:

179 ## pl.hat: vector of beta estimates from the PL model

180 ## Phat: length 2 list of first stage estimates, PRhat and PFhat

181 ## Y: 4 by M matrix of tabulated outcomes

182 ## regr: list of regressors for each utility function

183 ## maxit: Maximum number of iterations

184 ## tol: User specified step tolerance for (beta, pR, pF)

185 ## OUTPUTS:

186 ## npl.out: List containing

187 ## - NPL estimates (beta)

188 ## - Final best response update of pR

189 ## - Final best response update of pF

190 ## - Convergence code

191 ## + 1: Gradient close to zero at final inner step

192 ## + 2: Step tolerance statisfied at final inner step

193 ## + -69: Maximum out iterations exceded

194 ## + -99: Other error

195 ## - Number of outer iterations

196

197 #Setup

198 eval <- Inf

199 iter <- 0

200 out.NPL <- list(estimate = pl.hat)

201 fqll <- function(x){ #PL likelihood

202 -QLL.jo(x, Phat$PRhat, Phat$PFhat, Y, regr)

203 }

204 gr.qll <- function(x){ #PL gradient
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205 -eval_gr_qll(x, Phat$PRhat, Phat$PFhat, Y, regr)

206 }

207 while(eval > tol & iter < maxit){

208 Uk <- vec2U.regr(out.NPL$estimate, regr)

209 Pk.F <- eqProbs(Phat$PRhat, Uk, RemoveZeros = T)[,3]

210 Pk.R <- pnorm((Phat$PFhat*Uk$barWB + (1-Phat$PFhat)*Uk$VB - Uk$CB)/

Phat$PFhat)

211 Phat.k_1 <- Phat

212 Phat <- list(PRhat = Pk.R, PFhat = Pk.F)

213

214 #normalize

215 Phat$PRhat <- pmin(pmax(Phat$PRhat, 0.0001), .9999)

216 Phat$PFhat <- pmin(pmax(Phat$PFhat, 0.0001), .9999)

217

218 out.NPL.k <- try(maxLik(start=out.NPL$estimate, logLik=fqll, grad=gr.qll,

method="NR"))

219 if(class(out.NPL.k[[1]])=="character" || out.NPL.k$code==100){ #maxLik

failure

220 out.NPL <- out.NPL.k

221 break

222 }

223 out.NPL.k$convergence <- out.NPL.k$code

224 eval <- mean((c(out.NPL.k$estimate, unlist(Phat)) -c(

out.NPL$estimate,unlist(Phat.k_1)))^2)

225 out.NPL <- out.NPL.k

226 iter <- iter + 1

227 }

228 if(class(out.NPL[[1]])=="character"|| out.NPL.k$code==100){ #if there was a

failure

229 out.NPL$estimate <- rep(NA, 6)

230 out.NPL$convergence <- -99

231 out.NPL$iter <- -99

232 }else{

233 out.NPL$convergence <- ifelse(iter==maxit, -69, out.NPL$convergence)

234 out.NPL$convergence <- ifelse(eval==0, -99, out.NPL$convergence)

235 }

236 npl.out <- list(par = out.NPL$estimate,

237 PRhat = Phat$PRhat,

238 PFhat = Phat$PFhat,

239 convergence = out.NPL$convergence,

240 iter = out.NPL$iter)

241 return(npl.out)

242 }
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