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A Main simulations: Bias results

Figure A.1: Bias in estimating β
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Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV and CML (i.e., the percentage
of all-zero/all-one units) across the simulated datasets within each pane.

In this appendix, I present additional results from the main Monte Carlo simulations.

Figure A.1 considers the bias in the conditional maximum likelihood (CML), the maximum

likelihood dummy variable (MLDV), and the correlated random effects (CRE) estimates of

β. The first thing we see is that the advantage of the CRE over the MLDV persists. Again,

both the CRE and the CML perform well and tend to strictly dominate the MLDV.

Turning to substantive effects, I first consider the estimators’ performance at producing

predicted probabilities. Across almost all panes in Figure A.2, the CRE is clearly less biased

than the MLDV. These same trends appear in Figure A.3, which looks at bias in the AME.

Again the CRE mostly dominates the MLDV. In both cases, when the data are the MLDV’s

best case scenario (T ≥ 10 and non-rare events), the estimators are effectively identical.

Taken together, these two plots clearly recommend the CRE over the MLDV with either

rare events or small-T .
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Figure A.2: Bias in estimating predicted probabilities
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Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV (i.e., the percentage of
all-zero/all-one units) across the simulated datasets within each pane.

Figure A.3: Bias in estimating the average marginal effect
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Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV (i.e., the percentage of
all-zero/all-one units) across the simulated datasets within each pane.
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B Alternative approaches

Before proceeding, it’s worth considering the performance of other panel-data estimators

in this basic Monte Carlo setting. Specifically, I also consider a linear probability model with

fixed effects, ordinary random effects (random intercepts) model, the two-step estimator from

Beck (2015), and the penalized maximum likelihood (PML) estimator from Cook, Hays and

Franzese (2018). Beck’s two step works as follows. In the first step, the analyst uses the

CML to estimate β. In the second step, the analyst estimates c by fitting the MLDV to the

same data, but by fixing β̂ to the first step value.

The PML works by creating a bias-reduced version of the MLDV. Cook, et al. note that

the major problems with the MLDV stem from concerns that there may be separation bias

in the constants associated with the homogeneous units. These units end up being dropped

from the MLDV to avoid this issue, but doing so can introduce selection concerns into

the estimated marginal effects. As they point out, Firth’s (1993) bias-reduced estimator is

promising in this context.1 Firth-based bias reduction methods are an increasingly common

tool for applied researchers looking to reduce the (typically separation) biases found in gener-

alized linear models. The PML is created by adding a term onto the MLDV’s log-likelihood

function to “penalize” the estimates.2 In practice the penalization works by imposing Jef-

freys prior on all the parameters, which shrinks them toward zero. This shrinkage results

from analyst-induced information (i.e., information from outside the data) and reflects a

common understanding that estimates from a logistic regression should not be “too big”

(Zorn 2005).

1Cook, et al. pool across the all-zero groups, i.e., set ci = c0 for all i where
∑T

t=1 yit = 0. They note that

having a common constant for all the groups without variation in y improves the feasibility of the estimator.

I weaken this assumption to allow each of these groups to have their own constant and tackle the feasibility

problem by exploiting the sparsity of the design matrix instead. I compare their original setup to the CRE

in a later appendix.

2The PML can be estimated using Stata’s firthlogit and the R’s brglm::brglm.
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I also considered a generalized estimation equations (GEE) approach. With the GEE

there is a question of whether to include unit-dummies or just a single constant. In the

case of the former, the results are nearly identical to the MLDV and with just a single

constant, the results are nearly identical to a pooled logit (not good). This is expected

as the GEE’s main strength is it’s ability to better model within unit dynamics. Given

that this paper has deliberately ignored dynamic concerns in favor of considering the issues

associated with unobserved heterogeneity, the GEE has almost nothing to offer over the

MLDV. However, future work that addresses dynamic panels should consider the GEE as

an important alternative. Given that the GEE results do not notably differ from the MLDV

results, I omit them from this analysis.

Table B.1: Alternative panel-data estimators, best case conditions

CML PML MLDV RE Beck LPM

RMSE in β̂ 1.01 1.01 1.78 1.95 1.01
RMSE in p̂ 1.49 1.53 1.49 1.52 2.09

RMSE in AME 1.24 0.98 2.48 1.42 1.10

Note: All values are relative to the CRE. Values greater than 1 imply that the CRE is the better performing estimator.

Table B.1 demonstrates the performance of these alternative panel estimators under the

best-case conditions, T = 25 and non-rare events, with N = 100. Each cell reports the

estimator’s RMSE divided by the CRE’s RMSE for the same quantity, meaning that values

greater than 1 are evidence that the CRE is favored. As we can see, the PML, CML, and

Beck’s two-step all roughly match the CRE when it comes to finding β. Note that the

CML values and the Beck values are identical when we consider β by construction. The

MLDV does worse here than the others, but not as bad as the random effects model. The

traditional random effects model’s poor performance is expected given that it suffers from

omitted variable bias by construction.

In terms of predicted values, we again see that all the alternatives perform worse than

the CRE. The linear probability model estimates, in particular, have nearly twice the RMSE

of the CRE estimates. The other estimators have an RMSE about about 1.5 times that of

the CRE. Overall, the CRE is provides the best predicted probabilities in this experiment.
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Moving on the marginal effects, we see that despite its issues with the other quantities,

the MLDV is the best at finding the AME under these best case conditions. The CRE

provides very similar RMSE as the ratio is very close to 1. The remaining estimators all

do worse at finding the RMSE, with the traditional random effects estimator being far and

away the worst choice.

Table B.2: Alternative panel-data estimators with rare events

CML PML MLDV RE Beck LPM

RMSE in β̂ 1.07 1.05 2.11 2.32 1.07
RMSE in p̂ 1.67 2.00 1.63 1.87 2.43

RMSE in AME 2.86 8.86 2.32 7.73 1.07

Note: All values are relative to the CRE. Values greater than 1 imply that the CRE is the better performing estimator.

Overall, the results in Table B.1 suggest that even in conditions where alternative esti-

mators should be at their best, the CRE outperforms them. This conclusion is unchanged

if we were to consider a rare-events example with the same dimensions (T = 25, N = 100),

and in fact the CRE’s advantages tend to grow in that situation, as shown in Table B.2.

5



C Other parameter values

In this appendix, I expand the original Monte Carlos to consider more parameter values.

The purpose here is to expand on the experiments to ensure that the main conclusions are not

determined by specific values of α and β. The main setup of the Monte Carlos is unchanged

except now α ∈ {2, 2.25, 2.75, 3, 3.25} and β ∈ {−3,−2,−1}. These values provide lots of

variation in rareness with the probability that yit = 1 ranging from about 0.003 to 0.8. In

each of the figures, below, events get rarer as we move from the top to the bottom of the

page. Figures C.1, C.2, and C.3 consider the RMSE in estimating β, predicted probabilities,

and the AME, respectively. As in the main simulations, the MLDV does relatively well in

the best-case conditions (the upper right quadrant of each figure) and performs less well

than the CRE in the remaining three quadrants. Other alternative parameter settings can

be found in Appendices F, E, and H.
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Figure C.1: RMSE in estimating β expanding the parameter space
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Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV and CML (i.e., the percentage
of all-zero/all-one units) across the simulated datasets within each pane.
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Figure C.2: RMSE in estimating pit expanding the parameter space
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all-zero/all-one units) across the simulated datasets within each pane.
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Figure C.3: RMSE in estimating the AME expanding the parameter space
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D Only heterogeneous units

Figure D.1: RMSE in estimating β in only heterogeneous units
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Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV, CML, and rCRE (i.e., the
percentage of all-zero/all-one units) across the simulated datasets within each pane.

Figures D.1 and D.2 consider the RMSE in estimating β and c. Throughout, the rCRE

tends to be a little worse than the full-sample CRE. This difference suggests that when the

all-zero units are relevant, their inclusion is helpful to the CRE. This improvement results

from the partial pooling that occurs within the CRE framework, which allows it to use

information from relevant homogeneous units.

We now turn our attention to how well the various estimators perform when they only

consider the heterogeneous units. Specifically, we consider the following:
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Figure D.2: RMSE in estimating c with only heterogeneous units
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Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV and rCRE (i.e., the percentage
of all-zero/all-one units) across the simulated datasets within each pane.

• The CRE fit to the whole dataset, but we only consider the constants and substantive

effects on the restricted sample considered by the CML and MLDV;

• A restricted-CRE (rCRE) fit to the restricted sample considered by the CML and

MLDV;

• The MLDV.

All marginal effects here are conditional average marginal effects the (cAME) that only

consider heterogeneous units. The data generating process is unchanged from the main text.

In Figures D.3 and D.4 we see how well the estimators perform at finding predicted

probabilities and the cAME, respectively. The rCRE and MLDV struggle with both relative
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Figure D.3: RMSE in estimating predicted probabilities in only heterogeneous units
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Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV and rCRE (i.e., the percentage
of all-zero/all-one units) across the simulated datasets within each pane.

to the CRE in all but the best-case conditions. In some cases, the rCRE is very similar to

the MLDV, which is similar to the empirical applications.

However, in the above analysis all the homogeneous units are relevant to the data-

generating process. In many cases, it will be unclear if all the all-zero units are in fact

relevant. To the extent that there are relevant units, the full-sample CRE can use that infor-

mation in ways that the other two approaches do not. This information helps the full-sample

estimator so long as the units are relevant to the study.

Moving away from this ideal world, we now consider a situation where 90% of the sample

is irrelevant by construction. To do this, I follow the same data-generating process as above,

but add 9N additional units where ci = −∞. These units cannot ever experience the event.
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Figure D.4: RMSE in estimating the cAME
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Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV and rCRE (i.e., the percentage
of all-zero/all-one units) across the simulated datasets within each pane.

The same three models are fit to this data and, as before, we are only interested in the

substantive quantities associated with heterogeneous units: predicted probabilities and the

cAME.

Looking at both the estimates of β (Figure D.5) and the predicted probabilities (Figure

D.6), there appears to be a major split between the models depending on rareness. With

rare-events there are some relevant all-zero (a minority of the total all-zero units, but more

than in the non-rare events data), the full-sample CRE is still the best choice in many

cases. As T increases there are fewer relevant all-zero units and the estimators perform more

similarly. With more common data, the rCRE is the best performer, but the full-sample

CRE still tends to outperform the MLDV.
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Figure D.5: RMSE in estimating β with only heterogeneous units and lots of irrelevant
units.
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Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV, CML, and rCRE (i.e., the
percentage of all-zero/all-one units) across the simulated datasets within each pane.

Turning to the marginal effects estimates (Figure D.7), the trends are similar but slightly

different. Once again, the massive number of irrelevant observations worsens the CRE, but

even with so many totally irrelevant units (90% of the sample), it tends to do better than the

MLDV and very similar to the rCRE when it comes to finding the cAME. As the percentage

of irrelevant units grows, the full-sample CRE will continue to worsen. Unfortunately, it is

impossible to test for whether a unit is irrelevant. As such, the choice between using the

full-sample, the restricted sample, or some hybrid is entirely theoretical. The safest course

of action when the cAME is of interest is to estimate it multiple ways and note/discuss any

differences that emerge.
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Figure D.6: RMSE in estimating predicted probabilities with only heterogeneous units and
lots of irrelevant units.
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Figure D.7: RMSE in estimating the cAME with only heterogeneous units and lots of
irrelevant units.

% dropped = 99

% dropped = 93

% dropped = 98

% dropped = 91

% dropped = 97

% dropped = 90

% dropped = 94

% dropped = 90

T = 3 T = 5 T = 10 T = 25

R
are event

N
on−

rare E
vent

200 400 600 800 1000200 400 600 800 1000200 400 600 800 1000200 400 600 800 1000

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

N

R
M

SE

Estimator CRE MLDV restricted−CRE
Note: Percent dropped refers to the average percentage of units that are dropped by the MLDV and rCRE (i.e., the percentage
of all-zero/all-one units) across the simulated datasets within each pane.

16



E Highly censored, very rare data

This next set of Monte Carlos considers an example inspired by Green, Kim and Yoon

(2001). In this case, the data generating process is still the usual:

yit = I((zi + xit)β + ziα + εit > 0),

where xit ∼ N(0, 1), zi ∼ N(−4, 1), β = 2, and εit ∼ Logistic(0, 1), but now α = 5.2.3

This produces an extremely rare events data set (about 0.1% of the data are 1s) with lots

of all-zero units (roughly 98% of units). Here we only consider T = 30 and N = 1000.

As in the previous appendix, we are interested in how (not) including these large numbers

of homogeneous units affects estimator performance. Table E.1 displays the results. Even

though there are many units that are effectively irrelevant (the 90th quartile for the prob-

ability that yit = 1 is less than 0.0004), the full-sample CRE is easily the preferred choice.

As in the empirical examples, the MLDV and rCRE tend to produce very similar estimates

of predicted probabilities (in this case an average of 0.005–0.006, or about three times that

of the CRE) and cAME (in this case an average of −0.07, or about twice that of the CRE).

Table E.1: Estimator performance among heterogeneous units with highly censored, rare
events data

rCRE CRE MLDV
RMSE in ĉ 1.52 1.18 1.48
RMSE in p̂ 0.07 0.04 0.07

RMSE in cAME 0.03 0.01 0.07

3The constant terms are thus distributed normally with mean −20.8 and standard deviation 5.2. This

creates a situation that is in between the settings considered in Appendix D with many homogeneous units

that may be technically relevant in sense that they can experience event, but practically irrelevant in the

sense that an event is very unlikely.
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F Nonlinear relationship with unobservables

Figure F.1: RMSE in estimating β with a nonlinear relationship between the observed and
unobserved variables
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A concern throughout is with the CRE’s functional form assumption. The Mundlak

specification used in this paper has the advantage of being simple and easy to use, but it may

struggle in cases where there is a complicated relationship between the observed covariates

xit and unobserved heterogeneity zi. Here, I examine one such case to get a handle on how

bad the damage might be. The data generating process is still

yit = I(x∗itβ + ziα + εit > 0).
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However, now

x∗it = log(z2i + 7zi + 16 + xit),

where xit ∼ N(0, 1), zi ∼ N(−4, 1), β = 2, and εit ∼ Logistic(0, 1). As before, zi is

unobserved, and x∗it is the only observable. Now α takes on values of 2 (rare event) and

1 (not rare). The relationship between x∗ and z is now clearly nonlinear, so we may be

concerned that the Mundlak specification is no longer up to the task.

Figure F.2: RMSE in estimating predicted probabilities with a nonlinear relationship
between the observed and unobserved variables
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Figure F.1 considers estimating β under these new settings. overall, the CRE still does

very well in this situations, which is reassuring. Likewise as we look at the substantive
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Figure F.3: RMSE in estimating the AME with a nonlinear relationship between the
observed and unobserved variables
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quantities, we see that the CRE is still doing well relative to the MLDV when it comes to

predicted probabilities (Figure F.2) and marginal effects (Figure F.3) .
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G Little within variation

Figure G.1: RMSE in estimating β with low-amounts of within variation
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We are now interested in how well the estimators perform with rarely-changing covariates.

This is a common problem in a lot of IR and comparative TSCS datasets. Here, we return to

the original data generating process presented in the main text, but now the within standard

deviation of x∗it is set to 0.25 instead of 1. Additionally, α now takes on the values of 3 and

2 to keep the proportion of 1s roughly similar to the main Monte Carlos. Tightening the

within variation raises the correlation between x∗ and x̄∗ (up to above 0.95), which raises

strong concerns about multicolinearity in the CRE.

Figure G.1 considers the point estimates in these conditions, and the results roughly

match the main Monte Carlos. The CRE is still the most preferred over a range of situations.
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Similarly, when considering the substantive quantities, we see the usual trends: the CRE is

almost always the best choice.

Figure G.2: RMSE in estimating predicted probabilities with low-amounts of within vari-
ation
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Figure G.3: RMSE in estimating the AME with low-amounts of within variation
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H A direct comparison to PML

In this appendix, I provide a more direct comparison between the CRE and the PML

by replicating the main Monte Carlos from Cook, Hays and Franzese (2018). Here, I follow

their implementation of the PML and pool all the homogeneous units. Overall, this set of

simulations provides two important results.

1. The CRE’s improvement over the PML, as reported above, does not depend on how

whether we pool the homogeneous units or not;

2. The CRE performs well under a different parameter setting.

In the below tables I rerun their main simulations and report how the CRE, CML, and MLDV

compare to the PML, where values greater than 1 mean that the estimator is preferred to

the PML

The data generating process follows Cook, et al. (2018):

yit = I(xitβ + ci + εit > 0))

xit ∼ N(x̄i, σ
2)ci

x̄i

 ∼ N


−4

0

 ,

1 ρ

ρ 1


 ,

where β = 1 and εit remains i.i.d. standard logistic.

Tables H.1-H.5 reproduce Tables 1-5 from their manuscript, where the ordinary random

effects model they consider is changed to be the CRE. Values greater than 1 signify that the

estimator is preferred to their PML. Across all five of the above Tables, the CRE is at least

as good (ratio of about 1) or noticeably preferred to the PML.
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Table H.1: RMSE ratios in estimating β (ρ = 0.5, σ = 1)

Pooled CRE MLDV CML
T=20, N=50 0.88 1.02 0.84 0.99
T=20, N=100 0.59 1.04 0.74 0.99
T=50, N=50 0.55 1.00 0.92 1.00
T=50, N=100 0.32 1.00 0.87 1.00

Table H.2: RMSE ratios in estimating the AME (ρ = 0.5, σ = 1)

Pooled CRE MLDV Censoring (%)
T=20, N=50 0.52 1.06 0.14 48
T=20, N=100 0.41 1.12 0.10 50
T=50, N=50 0.33 1.09 0.17 32
T=50, N=100 0.26 1.28 0.14 33

Table H.3: RMSE ratios in estimating the AME (ρ = 0.25, σ = 1)

Pooled CRE MLDV Censoring (%)
T=20, N=50 1.07 1.04 0.15 49
T=20, N=100 0.73 1.15 0.11 50
T=50, N=50 0.66 1.14 0.18 31
T=50, N=100 0.44 1.30 0.16 32

Table H.4: RMSE ratios in estimating the AME (ρ = 0.5, σ = 2)

Pooled CRE MLDV Censoring (%)
T=20, N=50 0.60 1.02 0.14 30
T=20, N=100 0.43 1.00 0.09 32
T=50, N=50 0.35 1.04 0.21 15
T=50, N=100 0.31 1.11 0.18 15

Table H.5: RMSE ratios in estimating the AME (ρ = 0.25, σ = 2)

Pooled CRE MLDV Censoring (%)
T=20, N=50 1.06 1.01 0.16 29
T=20, N=100 0.72 1.00 0.10 32
T=50, N=50 0.66 1.04 0.25 13
T=50, N=100 0.56 1.12 0.21 13
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I Fitting the CRE

As mentioned the CRE can be fit using Stata’s xtlogit or R’s lme4::glmer. Alterna-
tively, a Bayesian implementation might be of interest, such as R’s rstanarm::stan glmer.
For example

 library(data.table) #easy data aggregation

 library(readstata13) #read the data

 library(lme4) #Maximum likelihood RE

 library(rstanarm) #Bayesian RE



 emw <- data.table(read.dta13("temp-micro.dta"))

 emw[,proUse:=mean(progov),by=dcode] #to match their coding



 #Generate the x_bar terms using data table

 emw[,‘:=‘(remit.bar = mean(remit,na.rm=T),

 cellphone.bar = mean(cellphone,na.rm=T),

 lage.bar = mean(lage,na.rm=T),

 education.bar = mean(education,na.rm=T),

 wealth.bar = mean(wealth,na.rm=T),

 male.bar = mean(male,na.rm=T),

 employment.bar = mean(employment,na.rm=T),

 travel.bar = mean(travel,na.rm=T),

 remitXpro.bar = mean(remitXpro,na.rm=T)),

 by = dcode] #grouping variable





 # MLE

 mle.cre.out <- glmer(protest01 ~ remit + remit:proUse + cellphone + lage +

 education + wealth + male + employment+ travel +

 remit.bar + remitXpro.bar +cellphone.bar + lage.bar +

 education.bar + wealth.bar + male.bar + employment.bar +

 travel.bar + (1|dcode),

 data=emw, family=binomial(), nAGQ = 12,

 control=glmerControl(optimizer = "bobyqa",

 optCtrl=list(maxfun=500000)))



 # Bayesian

 bayes.cre.out <- stan_glmer(protest01 ~ remit + remit:proUse + cellphone + lage +

 education + wealth + male + employment+ travel +

 remit.bar + remitXpro.bar + cellphone.bar + lage.bar +

 education.bar + wealth.bar + male.bar + employment.bar +

 travel.bar + (1|dcode),

 data=emw, family=binomial(),

 prior_intercept=normal(0,1), prior=normal(0,100),

 chains=4, cores=4, seed=1234567, init="0",iter=1000, thin=2)

Listing 1: Fitting the CRE to EMW’s data in R
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or in Stata

 /*CRE*/

 use temp-micro.dta, clear

 xtset dcode

 egen proUse = mean(progov), by(dcode) //match their use



 /*Generate the group means */

 egen remit_bar = mean(remit), by(dcode)

 egen remitXpro_bar = mean(remitXpro), by(dcode)

 egen cellphone_bar = mean(cellphone), by(dcode)

 egen lage_bar = mean(lage), by(dcode)

 egen education_bar = mean(education), by(dcode)

 egen wealth_bar = mean(wealth), by(dcode)

 egen male_bar = mean(male), by(dcode)

 egen employment_bar = mean(employment), by(dcode)

 egen travel_bar = mean(travel), by(dcode)



 xtlogit protest01 remit c.remit#c.proUse cellphone lage education wealth male

employment travel remit_bar remitXpro_bar cellphone_bar lage_bar education_bar

wealth_bar male_bar employment_bar travel_bar, re

Listing 2: Fitting the CRE to EMW’s data in Stata
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J About Figure 2 in EMW

Figure J.1: Average marginal effects from EMW
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Note that the marginal effects values I report for EMW (2018) method in the caption of

Figure 5 do not match the published values in their Figure 2. Examining their code reveals

a slight typo (lines 250 and 259 in their replication file) that explains the discrepancy.

Specifically, in estimating the average marginal effect, given by

ÂMERemit =
1

N

N∑
i=1

1

Ti

Ti∑
t=1

[
Λ
(

Remititβ̂1 + (Remitit × Progovernmenti)β̂2 + x′itβ̂3 + ĉi

)
×
(

1− Λ
(

Remititβ̂1 + (Remitit × Progovernmenti)β̂2 + x′itβ̂3 + ĉi

))
(J.1)

×
(
β̂1 + Progovernmentiβ̂2

)]
× 5,

they accidentally omit the middle line giving them

ÂMERemit =
1

N

N∑
i=1

1

Ti

Ti∑
t=1

[
Λ
(

Remititβ̂1 + (Remitit × Progovernmenti)β̂2 + x′itβ̂3 + ĉi

)
(J.2)

×
(
β̂1 + Progovernmentiβ̂2

)]
× 5.
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To verify this, consider Figure J.1.4 The results in red match the printed results from EMW

and are produced by me using Eq. J.2, while the results in blue are produced using Eq. J.1

and are presented in the main text. Obviously, this difference is incredibly minor does not

change any of their conclusions.
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