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A The linear programming diagnostic

Following Konis (2007) we begin with a D×k design matrix W and a binary outcome y.

When either complete or quasi-complete separation exists, there is a separating hyperplane

through Rk that describes the separation problem (i.e., all values of yd are 1 above the plane

and 0 below it). For each observation d = 1, . . . , D we are interested in the total unscaled

distance between wd and the hyperplane is given by
∑D

d=1w
′
dγ. If there is separation, then

w′dγ ≥ 0 when yd = 1 and w′dγ ≤ 0 when yd = 0. Let W̄ = [(2yd−1)wd,1, . . . , (2yd−1)wd,k]Dd=1

to make all the distances positive, and consider the following constrained optimization prob-

lem:

maximize 1′DW̄γ

s.t. W̄γ ≥ 0

−∞ < γj <∞ for j = 1, . . . , k,

where 1D is a length-D column vector of 1s.

If there is an overlap in the data, then the only solution to this problem is γ = 0 (a

separating hyperplane does not exist). However, when there is either complete or quasi-

complete separation, the problem is unbounded (Konis 2007, 79, Remark 1). To see this

result, consider the case of (quasi-complete) separation. In this case, a (semi-)separating

hyperplane will exist. Suppose that γ̃ is feasible for the linear program, with W̄ γ̃ ≥ 0 and

1′DW̄ γ̃ > 0. If γ̃ is a solution, then cγ̃ will also be a solution for any c > 0. As c grows, the

objective function grows with it to infinity while still satisfying the constraint. Identifying

separation then becomes as easy as checking the convergence of the above lp. The R function

detectseparation::detect separation conducts the diagnostic.
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B Additional simulations and analysis

B.1 Effect of estimating pB on estimating α1

In the main Monte Carlo results presented in Table 1, we find that both the ordinary

SBI and BR-SBI struggled in estimating α1. In the case of the former, this is unsurprising as

the estimate of pB for the ordinary SBI is tainted by separation induced inflation in β̂1. In

the case of the latter, this is surprising as the BR-SBI does reasonably well at estimating β1.

Additional analysis reveals that the distribution of BR-SBI estimates α̂1 has an unusually

long tail away from zero. This finding prompts the question: how much of the trouble here

is about the two-step nature of the SBI? Put another way, how much of bias/variance in the

SBI estimates of α1 results from estimating pB separately and in the presence of separation?

The results of this simulation are reported in Table B.1. Here, we see the ordinary SBI

is greatly affected in its ability to estimate the parameter α1 and that nearly all of this

difficulty is due to how it estimates pB. Notably, we see that the standard deviation over

simulations decreases by several orders of magnitude, suggesting that even small issues with

p̂B can spill into and cause cascading bias in the second stage estimates. This trend is also

true for the BR-SBI, where the standard deviation over simulations is much closer to the true

standard error and the average standard error over simulations. Even though the BR-SBI

still exhibits some sensitivity to estimating pB it appears to be more robust to these issues

than the ordinary SBI.

B.2 Separation in both utilities

Our second set of Monte Carlos looks at the problem when there is separation in both

equations. In this case B’s choice is given by

yB = I [0.25 + 4XB + εB(1)− εB(0) > 0] ,
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Table B.1: Analysis of α̂ when SBI uses the true pB

Estimator Statistic α0 α1

Ordinary SBI Expected value 1.50 -2.80
St. Dev. 0.13 1.04
St. Err. 0.13 1.58
Coverage 0.95 0.96
Power 1.00 0.99

BR-SBI Expected value 1.50 -2.52
St. Dev. 0.13 0.81
St. Err. 0.13 0.73
Coverage 0.95 0.93
Power 1.00 1.00

Truth Parameters 1.50 -2.50
St. Err. 0.13 0.71

and pB = Φ
(

0.25+4XB√
2

)
. Likewise, player A’s choice is given as

yA = I [1.5 + 4(XApB) + εA(1)− εA(0) > 0] .

In terms of Figure 2, we have α0 = −1.5, α1 = 4, β0 = 0.25, β1 = 4. Here SF is the

most likely outcome (about 3/4 of observations), with BD and SQ representing about 15%

and 10% of outcomes, respectively. We keep results where the lp-diagnostic finds separation

between either covariate and the outcomes BD and either (SQ or SF ).1

The Monte Carlo results are reported in Table B.2. As before, there is striking improve-

ment in bias, variance, RMSE and power when employing a BR estimator. Additionally, we

again see that the average standard errors for the BR estimates where separation is not a

problem are very close to the simulated standard deviation and average true standard errors,

while the BR standard errors for the corrected estimates remain conservative relative to the

simulated standard deviation of the sampling distribution.

One interesting point about the results in Table B.2 is the difference between ordinary

SBI and FIML. Specifically, in estimating α1 the ordinary SBI produces an average esti-

1Again, when the lp-diagnostic does not detect a problem, the six estimators produce nearly identical

results.
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Table B.2: Monte Carlo results when separation is present at both decision nodes.

Estimator Quantity α0 α1 β0 β1 RMSE
Ordinary SBI Est −1.50 8.57 0.25 8.10 7.48

St.Dev. 0.14 4.26 0.12 0.13
St.Err. 0.14 469.59 0.12 370.52
Power 1.00 0.39 0.57 0.00

Coverage 0.95 0.97 0.95 1.00
BR-SBI Est −1.50 3.66 0.25 3.87 0.77

St.Dev. 0.14 0.64 0.12 0.12
St.Err. 0.14 1.03 0.12 0.70
Power 1.00 1.00 0.57 1.00

Coverage 0.95 0.92 0.95 1.00
Ordinary FIML Est −1.50 6.16 0.25 6.75 4.26

St.Dev. 0.14 2.36 0.12 0.60
St.Err. 0.14 11.10 0.12 71.71
Power 1.00 0.39 0.57 0.00

Coverage 0.95 0.97 0.95 1.00
BR-FIML (Firth) Est −1.50 3.65 0.26 3.87 0.76

St.Dev. 0.14 0.63 0.12 0.12
St.Err. 0.14 1.08 0.12 0.73
Power 1.00 1.00 0.60 1.00

Coverage 0.95 0.93 0.95 1.00
BR-FIML (Cauchy) Est −1.51 3.88 0.26 4.31 0.86

St.Dev. 0.14 0.76 0.12 0.13
St.Err. 0.14 1.27 0.12 1.13
Power 1.00 1.00 0.61 1.00

Coverage 0.95 0.94 0.95 1.00
BR-FIML (log-F ) Est −1.51 3.69 0.27 4.16 0.75

St.Dev. 0.14 0.62 0.12 0.12
St.Err. 0.14 1.12 0.12 0.97
Power 1.00 1.00 0.63 1.00

Coverage 0.95 0.94 0.95 1.00
Truth Parameters −1.50 4.00 0.25 4.00

St. Err. (SBI) 0.14 1.20 0.12 0.78
St. Err. (FIML) 0.14 1.22 0.12 0.82

mate of nearly 9 while the ordinary FIML is close to 6. Indeed, the ordinary SBI tends to

inflate the estimates associated with separation more than the ordinary FIML across simula-

tions. The reason this difference emerges has to do with the underlying default optimization

software. Ordinary probits are typically fit using iterative reweighted least squares (IRLS)

which closely approximates the Newton-Raphson method for optimization, while the ordi-
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nary FIML is fit using the quasi-Newton BFGS algorithm by default. If we switch the FIML

to Newton-Raphson or the SBI probit to BFGS the results tend to align more closely. How-

ever, these differences further demonstrate the numerical difficulties induced by separation.

Two standard optimization algorithms can produce wildly different results as they try to find

the maximum of a monotonic likelihood function and neither is the true maximum likelihood

estimate of infinity. Note that these differences do not emerge once a penalty is added. The

BR-SBI and BR-Firth tend to be very similar despite using the same differing optimization

routines as their uncorrected counterparts. Likewise, changing the optimization routine for

either of the density penalties does very little to the results.

B.3 Small sample size

The first additional simulation we consider is: how well do the estimators perform with

a smaller sample size. This is an important check as separation problems are more common

in smaller datasets, and the biases introduced by small samples can compound separation

problems. Additionally, the Signorino and Tarar (2006) replication has a small sample, and

we want to make sure that our proposed tools will work as expected in such a situation.

In the first exercise, we set D = 50 with parameters equal to the true values indicated

in Table B.3. In the second one, we still have D = 50, but the parameters now set to the

true values presented in Table B.4. Note that in both experiments we tweak the parameters

compared to the large-sample simulations. This is done to accommodate the fact that it

takes less extreme parameter values to induce separation with a small sample. As noted,

separation is essentially a small-sample problem. These adjustments have the additional

value of demonstrating that our main conclusions are not driven by specific choices in pa-

rameter values. In the first experiment we still only consider cases where the lp-diagnostic

finds that the outcome BD is perfectly predicted, while in the second case we look at cases

where the lp-diagnostic finds separation associated with the outcomes BD and either SF or

SQ.
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Table B.3: Coefficient estimates, standard errors, and root mean-squared error when sep-
aration is present in Player B’s decision and D = 50

Estimator Quantity α0 α1 β0 β1 RMSE
Ordinary SBI Est −0.48 −2.17 −1.29 9.51 7.15

St.Dev. 0.35 1.70 1.49 1.85
St.Err. 0.33 59.06 558.84 2311.15
Power 0.29 0.79 0.49 0.01

Coverage 0.94 0.95 0.98 1.00
BR-SBI Est −0.47 −1.95 −1.03 3.57 1.34

St.Dev. 0.34 0.83 0.56 0.60
St.Err. 0.33 0.78 0.55 1.24
Power 0.28 0.78 0.49 0.97

Coverage 0.95 0.96 0.98 1.00
Ordinary FIML Est −0.49 −2.21 −1.18 7.23 4.82

St.Dev. 0.35 1.62 0.94 1.27
St.Err. 0.33 1.24 6.56 4228.03
Power 0.29 0.77 0.54 0.01

Coverage 0.95 0.96 0.97 1.00
BR-FIML (Firth) Est −0.48 −1.93 −1.02 3.59 1.41

St.Dev. 0.35 0.91 0.54 0.63
St.Err. 0.34 0.81 0.53 1.31
Power 0.28 0.75 0.52 0.96

Coverage 0.94 0.95 0.97 1.00
BR-FIML (Cauchy) Est −0.45 −1.88 −0.99 3.85 1.51

St.Dev. 0.34 0.79 0.58 0.67
St.Err. 0.33 0.79 0.53 1.46
Power 0.25 0.74 0.48 0.97

Coverage 0.95 0.96 0.96 1.00
BR-FIML (log-F ) Est −0.44 −1.86 −0.90 3.58 1.24

St.Dev. 0.33 0.73 0.50 0.52
St.Err. 0.34 0.79 0.51 1.33
Power 0.24 0.74 0.42 0.97

Coverage 0.96 0.96 0.96 1.00
Truth Parameters −0.50 −2.00 −1.00 3.00

St. Err. (SBI) 0.33 0.78 0.52 1.02
St. Err. (FIML) 0.34 0.83 0.51 1.09

In both small-sample experiments we see that the main results still mostly hold. The BR-

SBI narrowly edges out the BR-FIML with Jeffreys prior or the Cauchy in one experiment,

but these differences are fairly minor compared to the gaps between all BR and the two

ordinary estimators. The log-F BR-FIML estimator continues to do very well. Overall,
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Table B.4: Coefficient estimates, standard errors, and root mean-squared error when sep-
aration is present at both decision nodes decision and D = 50

Estimator Quantity α0 α1 β0 β1 RMSE
Ordinary SBI Est −0.20 −9.94 −0.78 8.83 13.79

St.Dev. 0.38 9.93 1.74 2.39
St.Err. 0.36 19665.98 879.46 2845.98
Power 0.08 0.68 0.06 0.01

Coverage 0.94 0.94 0.98 0.99
BR-SBI Est −0.16 −4.80 −0.49 2.82 3.38

St.Dev. 0.38 2.63 0.63 0.73
St.Err. 0.35 1.78 0.67 1.37
Power 0.07 0.96 0.04 0.61

Coverage 0.94 0.94 0.98 0.99
Ordinary FIML Est −0.21 −9.31 −0.57 6.51 15.77

St.Dev. 0.37 13.91 0.73 1.46
St.Err. 0.36 20.35 0.88 11472.00
Power 0.09 0.33 0.08 0.01

Coverage 0.95 1.00 0.97 0.99
BR-FIML (Firth) Est −0.18 −4.07 −0.29 2.53 2.59

St.Dev. 0.39 2.09 0.50 0.72
St.Err. 0.36 1.76 0.55 1.33
Power 0.08 0.87 0.05 0.54

Coverage 0.94 0.96 0.98 0.97
BR-FIML (Cauchy) Est −0.13 −3.93 −0.17 2.73 1.83

St.Dev. 0.37 1.24 0.54 0.67
St.Err. 0.35 1.64 0.56 1.45
Power 0.07 0.91 0.02 0.45

Coverage 0.95 1.00 0.99 0.98
BR-FIML (log-F ) Est −0.11 −3.58 −0.11 2.63 1.34

St.Dev. 0.35 0.81 0.48 0.55
St.Err. 0.35 1.39 0.55 1.39
Power 0.05 0.96 0.01 0.44

Coverage 0.95 1.00 1.00 0.98
Truth Parameters −0.20 −3.00 −0.15 3.00

St. Err. (SBI) 0.35 0.98 0.63 1.70
St. Err. (FIML) 0.35 1.06 0.52 1.55

these results provide additional evidence that separation can be very problematic for ordinary

estimators and that any type of BR should be preferred in terms of RMSE.
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B.4 Joint separation induced by a single variable

Next, we consider the effect of having a single variable that induces separation into both

actors’ utility calculations. Specifically, let B’s choice be given by

yB = I [−0.5 + 0.25XB + 5X + εB(1)− εB(0) > 0] ,

and A’s decision is

yA = I [2 + (0.25XA + 2.5X)pB + εA(1)− εA(0) > 0] .

Note that the variable X enters both the utility function for both A and B, while XA and

XB are unique to their respective actors. Additionally, XA and XB are now distributed i.i.d

standard normal, while X is distributed Bernoulli with mean 0.5. As in the main simulations

we use a sample size of 500 and we only consider the cases where the lp-diagnostic finds

separation associated with outcomes SQ and BD. The results are reported in Table B.5

and are largely consistent with the results in the main text. All the BR estimators perform

better than their ordinary counterparts, and the BR-FIML estimators (with any correction)

outperforms the BR-SBI.

B.4.1 Dropping offending variables

Some statistical software/routines (e.g., Stata’s logit and probit) drop variables that

lead to in-sample separation. On the one hand, this solution allows analysts to ignore the

separation problem and continue their analysis. On the other hand, this strategy risks

inducing omitted variable bias. In the strategic setting, dropping variables in B’s choice

equation may lead to not only omitted variable bias as it is commonly understood, but

it may also lead to cascading bias through the endogenous quantity pB. What are the

consequences of dropping variables that lead to separation problems in this context? To

assess this, we consider two additional simulations. In both cases, we tweak the DGP from
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Table B.5: Coefficient estimates, standard errors, and root mean-squared error when a
single variable produces separation in both players’ utilities

Estimator Quantity α0 α1 α2 β0 β1 β2 RMSE
Ordinary SBI Est −2.03 0.26 5.96 −0.51 0.25 9.01 5.74

St.Dev. 0.18 0.46 2.14 0.12 0.12 0.28
St.Err. 0.17 0.44 417.20 0.12 0.12 358.34
Power 1.00 0.09 0.20 0.99 0.54 0.00

Coverage 0.95 0.95 0.98 0.95 0.95 1.00
BR-SBI Est −2.01 0.23 2.12 −0.50 0.25 4.72 0.79

St.Dev. 0.17 0.40 0.41 0.12 0.12 0.15
St.Err. 0.17 0.36 0.67 0.12 0.12 0.70
Power 1.00 0.10 1.00 0.99 0.54 1.00

Coverage 0.95 0.94 0.90 0.95 0.95 1.00
Ordinary FIML Est −2.03 0.26 4.52 −0.51 0.25 8.14 4.06

St.Dev. 0.18 0.46 1.43 0.12 0.12 0.48
St.Err. 0.17 0.44 17.74 0.12 0.12 96.47
Power 1.00 0.09 0.20 0.99 0.55 0.00

Coverage 0.95 0.95 0.98 0.95 0.95 1.00
BR-FIML (Firth) Est −2.01 0.23 2.13 −0.50 0.25 4.73 0.79

St.Dev. 0.17 0.40 0.41 0.12 0.12 0.15
St.Err. 0.17 0.37 0.70 0.12 0.12 0.74
Power 1.00 0.09 1.00 0.99 0.55 1.00

Coverage 0.95 0.95 0.92 0.95 0.95 1.00
BR-FIML (Cauchy) Est −2.04 0.22 2.51 −0.50 0.25 5.24 0.72

St.Dev. 0.18 0.37 0.48 0.12 0.12 0.16
St.Err. 0.17 0.41 1.01 0.12 0.12 1.19
Power 1.00 0.05 0.99 0.99 0.54 1.00

Coverage 0.95 0.97 0.97 0.95 0.96 1.00
BR-FIML (log-F ) Est −2.03 0.22 2.48 −0.50 0.25 5.03 0.64

St.Dev. 0.17 0.37 0.44 0.12 0.12 0.15
St.Err. 0.17 0.40 0.98 0.12 0.12 0.97
Power 1.00 0.05 0.99 0.99 0.54 1.00

Coverage 0.95 0.97 0.97 0.95 0.96 1.00
Truth Parameters −2.00 0.25 2.50 −0.50 0.25 5.00

St. Err. (SBI) 0.16 0.40 0.94 0.12 0.12 0.92
St. Err. (FIML) 0.16 0.41 0.95 0.12 0.12 0.96

the experiment in Appendix B.4, above, but we drop the X as it induces the monotonic

likelihood problem.
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In the first experiment (Table B.6), the regressors are correlated such that


X∗

XA

XB

 ∼ N




0

0

0

 ,


1 0.7 −0.7

0.7 1 −.1

−0.7 −.1 1




xd = I(x∗d > 0).

In the second experiment (Table B.7), the regressors are independent of each other:

X ∼ Bernoulli(0.5)

XA ∼ N(0, 1)

XB ∼ N(0, 1).

The only specification concern here is the effect on p̂B. Here, we want to see the problems

with dropping regressors that are associated with the in-sample issues even under the ideal

condition of regressor independence.

In the case of correlated variables being dropped (Table B.6), we see both omitted variable

and broader misspecification bias from dropping a variable that is relevant to pB. Overall,

all six estimators produce nearly identical results, but unfortunately, they are all quite bad.

Notably, two estimates (α1 and β0) now have the wrong sign. Likewise, even though there

is reasonable power against the null hypothesis that α1 = 0, the estimates are in the wrong

direction leading to a mistaken directional inference. Even more shocking, the RMSE from

all six estimators are effectively identical and uniformly worse than even the worst RMSE in

Table B.5. This commonly used solution can be worse than the original problem.

In order to be sure that these results are not just driven by the omitted variable side of

things, we repeat this experiment with independent regressors (Table B.7). The only issue

here is misspecification in pB. As above, all the estimators largely agree with each other

here, and the RMSE is still just as bad as using the correctly specified, but uncorrected SBI.
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Table B.6: Monte Carlo results when we drop variables that induce in-sample separation
and the omitted variable is correlated with other covariates

Estimator Quantity α0 α1 α2 β0 β1 β2 RMSE
Ordinary SBI Est −2.60 −0.47 0.00 0.78 1.02 0.00 5.87

St.Dev. 0.16 0.18 0.00 0.09 0.11 0.00
St.Err. 0.16 0.22 0.09 0.11
Power 1.00 0.56 1.00 1.00

Coverage 0.01 0.06 0.00 0.00
BR-SBI Est −2.57 −0.45 0.00 0.78 1.01 0.00 5.86

St.Dev. 0.15 0.18 0.00 0.09 0.11 0.00
St.Err. 0.16 0.22 0.09 0.11
Power 1.00 0.55 1.00 1.00

Coverage 0.01 0.06 0.00 0.00
BR-FIML (Firth) Est −2.60 −0.47 0.00 0.78 1.02 0.00 5.87

St.Dev. 0.16 0.18 0.00 0.09 0.11 0.00
St.Err. 0.16 0.23 0.09 0.11
Power 1.00 0.53 1.00 1.00

Coverage 0.01 0.07 0.00 0.00
BR-FIML (Firth) Est −2.60 −0.47 0.00 0.78 1.02 0.00 5.87

St.Dev. 0.16 0.18 0.00 0.09 0.11 0.00
St.Err. 0.16 0.23 0.09 0.11
Power 1.00 0.53 1.00 1.00

Coverage 0.01 0.07 0.00 0.00
BR-FIML (Cauchy) Est −2.60 −0.47 0.00 0.78 1.02 0.00 5.87

St.Dev. 0.16 0.18 0.00 0.09 0.11 0.00
St.Err. 0.16 0.23 0.09 0.11
Power 1.00 0.53 1.00 1.00

Coverage 0.01 0.07 0.00 0.00
BR-FIML (log-F ) Est −2.60 −0.47 0.00 0.78 1.02 0.00 5.87

St.Dev. 0.16 0.18 0.00 0.09 0.11 0.00
St.Err. 0.16 0.23 0.09 0.11
Power 1.00 0.53 1.00 1.00

Coverage 0.01 0.07 0.00 0.00
Truth Parameters −2.00 0.25 2.50 −0.50 0.25 5.00

St. Err. (SBI) 0.19 0.51 0.99 0.14 0.15 1.08
St. Err. (FIML) 0.19 0.52 1.00 0.14 0.15 1.12
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Table B.7: Monte Carlo results when we drop variables that induce in-sample separation
and the omitted variable is independent of the other covariates

Estimator Quantity α0 α1 α2 β0 β1 β2 RMSE
Ordinary SBI Est −2.51 0.12 0.00 0.72 0.13 0.00 5.76

St.Dev. 0.16 0.22 0.00 0.09 0.09 0.00
St.Err. 0.15 0.21 0.09 0.09
Power 1.00 0.08 1.00 0.34

Coverage 0.04 0.90 0.00 0.70
BR-SBI Est −2.48 0.12 0.00 0.72 0.13 0.00 5.75

St.Dev. 0.15 0.21 0.00 0.08 0.09 0.00
St.Err. 0.15 0.21 0.09 0.09
Power 1.00 0.08 1.00 0.34

Coverage 0.05 0.90 0.00 0.70
Ordinary FIML Est −2.51 0.12 0.00 0.72 0.13 0.00 5.76

St.Dev. 0.16 0.22 0.00 0.09 0.09 0.00
St.Err. 0.15 0.21 0.09 0.09
Power 1.00 0.08 1.00 0.34

Coverage 0.04 0.90 0.00 0.70
BR-FIML (Firth) Est −2.51 0.12 0.00 0.72 0.13 0.00 5.76

St.Dev. 0.16 0.22 0.00 0.09 0.09 0.00
St.Err. 0.15 0.21 0.09 0.09
Power 1.00 0.08 1.00 0.34

Coverage 0.04 0.90 0.00 0.70
BR-FIML (Cauchy) Est −2.51 0.12 0.00 0.72 0.13 0.00 5.76

St.Dev. 0.16 0.22 0.00 0.09 0.09 0.00
St.Err. 0.15 0.21 0.09 0.09
Power 1.00 0.08 1.00 0.34

Coverage 0.04 0.90 0.00 0.70
BR-FIML (log-F ) Est −2.51 0.12 0.00 0.72 0.13 0.00 5.76

St.Dev. 0.16 0.22 0.00 0.09 0.09 0.00
St.Err. 0.15 0.21 0.09 0.09
Power 1.00 0.08 1.00 0.34

Coverage 0.04 0.90 0.00 0.70
Truth Parameters −2.00 0.25 2.50 −0.50 0.25 5.00

St. Err. (SBI) 0.16 0.40 0.94 0.12 0.12 0.92
St. Err. (FIML) 0.16 0.41 0.95 0.12 0.12 0.96
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For the other estimators, this solution is still worse than the original separation problem.

B.5 Monte Carlo with real and many covariates

Finally, we consider a more sophisticated set of experiments. Here we use independent

variables from Signorino and Tarar (2006) to conduct a Monte Carlo experiment based on

real-world data. In this simulation we use the BR-FIML estimates from Table 4 to generate

new outcome data using the independent variables from Signorino and Tarar (2006). For

each Monte Carlo iteration we generate new values of the dependent variable and refit the

model using five of the above estimators. As in the main text, we ignore the BR-FIML with

Jeffreys prior, as this particular example has such a very poorly behaved objective function

that the logged Jeffreys prior penalty is frequently undefined. We repeat this simulation 500

times.

Note that this experiment provides two important extensions over the previous simu-

lations. First, as mentioned, it uses real-world data with many covariates, which gives the

most realistic setup of any experiment we consider. Second, it uses a data generating process

that is based on private information over outcomes rather than actions. This setup shows

us how the solutions work with this different information structure.

The results of this simulation are reported in Table B.8, where each cell indicates the

RMSE of the proposed estimator relative to the RMSE of the BR-FIML (log-F ). Cases where

this ratio is less than 1 are bolded and indicate that the alternative estimator does a better job

than the BR-FIML (log-F ) at estimating this quantity. Note that this occurs only in one of

the cases considered. The final row presents the multivariate RMSE of each estimator relative

to the BR-FIML. As expected, the BR-SBI and BR-FIML (Cauchy) perform reasonably well

and much better than the ordinary estimators, but overall the BR-FIML (log-F ) is the best

in this experiment.

As a final simulation, we want to show the possibilities for separation-induced type-1 and

type-2 errors with this more realistic data. To do this, we re-evaluate the previous simulation

but we fix β Military Alliance to 0. We focus then on the null hypotheses that β Military Alliance = 0
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Table B.8: Relative RMSE of Estimates Compared to BR-FIML (log-F )

Ordinary SBI BR-SBI Ordinary FIML BR-FIML (Cauchy)
UA(SQ): Const. 36.43 2.03 120.46 2.13

UA(SQ): Tit-for-Tat 106.12 1.43 203.42 1.30
UA(SQ): Firm-Flex 73.48 1.22 119.09 1.38

UA(SQ): Democratic Attacker 37.95 1.36 102.49 1.03
UA(SQ): Year 73.50 1.13 160.55 1.30

UA(BD): Const. 47.18 2.70 130.11 3.64
UA(War): Nuclear 44.94 1.59 101.99 1.19

UA(War): Immediate Balance 10.95 1.53 147.32 1.32
UA(War): Short-term Balance 71.78 2.20 156.79 1.31
UA(War): Long-term Balance 25.04 1.10 74.55 1.16
UA(War): Military Alliance 54.22 1.38 153.91 1.43
UA(War): Arms Transfers 25.13 0.69 63.67 1.19

UB(War): Const. 166.72 1.70 157.89 1.08
UB(War): Nuclear 75.57 1.69 166.81 1.25

UB(War): Immediate Balance 124.35 2.17 125.59 1.21
UB(War): Short-term Balance 119.90 1.83 142.80 1.20
UB(War): Military Alliance 55.71 1.40 73.91 1.13
UB(War): Arms Transfers 49.30 1.52 102.37 1.19
UB(War): Foreign Trade 153.26 1.24 162.27 1.27

UB(War): Stalemate 81.14 1.64 112.28 1.07
UB(War): Democratic Defender 83.28 1.54 110.32 1.11

Multivariate RMSE 77.33 1.80 132.27 1.78
Bold values indicate estimates where the estimator outperforms the BR-FIML (log-F ) estimator

and βNuclear = 0, the former is true in this simulation and rejecting it is an example of a

type-1 error, the latter is false and rejecting it reflects the power of the study.2 We choose

these two parameters as we believe that military alliance is at least one variable that induces

the separation problem in this sample (see Figure 3), while the BR-FIML estimate for the

effect of nuclear weapons is the only BR-FIML estimate in B′s utility function that has

statistical significance in the Table 4.

Table B.9 presents the results of this simulation. Here we see that the ordinary SBI

commits no type-1 errors, but also has no power against the null that nuclear weapons have

no effect. The BR-SBI has the second-lowest type-1 error rate, but also the second-highest

type-2 error rate. The ordinary FIML has a type-1 error rate that is nearly twice what we

2If an estimator returns a missing value for the standard error we say that it failed the test (committed

a type-1 or type-2 error depending on the situation).
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want given a p < 0.05 rejection rule, but it has the most power. The two BR-FIMLs have

very good type-1 error rates that are smaller than expected at p < 0.05, which is consistent

with their conservative standard errors. Likewise, both improve these type-1 error rates

without sacrificing much power over the ordinary FIML in identifying an effect of nuclear

weapons.

There are three major takeaways here. First, we again show that separation can lead

to problems with power, particularly in the SBI context. Second, this simulation indicates

that ordinary-FIML can be prone to type-1 errors when separation is present. Third, the

BR-FIMLs have a low type-1 error rate and reasonable power, making it a good choice when

separation is present in the sample.

Table B.9: Power and type-1 errors using Signorino and Tarar data

SBI BR-SBI FIML BR-FIML BR-FIML
(Cauchy) (log-F )

UB(War): Nuclear (Power) 0.00 0.10 0.25 0.22 0.25
UB(War): Military Alliance (Type-1 error) 0.00 0.00 0.08 0.02 0.03

C Signorino and Tarar specification and variable description

Signorino and Tarar (2006) use data on 58 interstate crises between 1885 and 1983 that

was originally collected by Huth (1988). In this application, A’s status quo utility is given

by a constant term along with a time trend and indicators for whether: (i) past military

buildups and preparations between A and B have been proportional or “tit-for-tat” rather

than one-sided, (ii) past negotiations and relations between A and B were “firm-but-flexible”

as opposed to hostile or conciliatory, and (iii) A is a democracy (polity score of at least 5).

When B stands firm and fights, A’s utility is specified without a constant and includes:

whetherB has nuclear weapons (binary), the immediate balance of power (ratio ofB’s ground

troops to A’s), the short-term balance of power (ratio of B’s ground forces, air forces, and

first-level reserves to A’s), the long-term balance of power (a more complicated ratio of B’s
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ability to build and mobilize to A’s),3 whether there is a military alliance between B and

the protégé state (binary), and the percentage of the protégé’s arms imports that come from

B. Finally, A’s utility when B backs down is given by only a constant term.

Turning to B, the utility for war is based on all the factors that affect A’s war payoff

plus an indicator for whether the last crisis between A and B ended in a stalemate (i.e., they

avoided armed conflict but failed to resolve any of the underlying issues between them), an

indicator for whether B is a democracy, and a measure of the trade dependence between the

protégé and B.

The authors use standard normal, outcome-specific shocks, so the choice probabilities

are

Pr(yB = 1) = pB = Φ

(
UB(SF )√

2

)
Pr(yA = 1) = pA = Φ

(
(1− pB)UA(BD) + pBUA(SF )− UA(SQ)√

(1− pB)2 + p2B + 1

)
.

For a more detailed discussion on how these choice probabilities are derived see Signorino

2003. Note that, as in the Monte Carlo simulations, we adjust the SBI results to account

for the information structure and make them comparable to the FIML estimates. Player

B’s regressors are all multiplied by 1/
√

2, while player A’s regressors are multiplied by

1/
√

1 + (1− p̂B)2 + p̂2B

D Replication study: Currency crises

Leblang 2003 considers an interaction between bondholders and states. Player A is a

credit holder who has the choice of initiating a speculative attack against country B; B then

defends or devalues its currency. The data record 90 developing democracies (polity score

≥ 5) from 1985-1998 and are organized into country-months. The three possible outcomes

(status quo, attack-devalue, attack-defend) form the dependent variable. The status quo

3See Huth (1988, 61-2) for more details on long-term balance.
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outcome is recorded in any month when no speculative attack occurs. An attack-devalue

outcome is recorded when a speculative attack occurs in month t and the country devalues

its currency in t+ 1. Finally, an attack-defend outcome is recorded when a currency attack

occurs in period t and the state still has its currency pegged to a fixed exchange rate at t+1.

See Leblang (2003, 544-5) for more details on how he determines whether a speculative attack

has occurred.

Table D.1: Checking for separation in Leblang (2003)

Regressors Outcome Result
XB yB | yA = 1 No
ZSBI yA No
[ZFIML XB] I(yA = 0) No
[ZFIML XB] I(yA = 1)I(yB = 0) No
[ZFIML XB] I(yA = 1)I(yB = 1) No
Note: The Z variables are transformed using estimates of pB from the unpenalized estimators.

The independent variables that parameterize the A’s value of the status quo include an

indicator for whether state B has capital controls in place, the logged value of B’s foreign ex-

change reserves, an indicator for whether B’s pegged exchange rate overvalues B’s currency,

the rate of domestic credit growth in B, the current interest rate in the United States, the

ratio of debt service to GDP in B, a measure of contagion (nearby currency crises), and the

number of previous attacks against B. Additionally, A’s value for outcomes attack-defend

and attack-devalue are specified as constants.

The specification of B’s utility for defending its pegged exchange rate, includes B’s foreign

exchange reserves, the logged value of exports as a percentage of GDP, the real interest rate

within B, and indicators for capital controls, whether an election is coming in the next three

months, whether an election happened in the last three months, whether a right-wing party

leads the government, and whether the party in power has a majority in the legislature. All

non-indicator variables are standardized.

We fit the model with four of the above estimators. The results are presented in Table

D.2. Note that there are slight differences between the results presented here and those

printed in Leblang (2003). However they are relatively minor and likely result from slight
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differences in software. Additionally, we checked the results against the BR-FIML estimators

with the density penalties and found no notable differences.

What we can see from the table is that the corrections do not change the results in

any noticeable way. Additionally, there are no appreciable differences between the SBI and

FIML estimates. These results are consistent with our belief that these data do not have

a separation problem. Furthermore, this example reassures us that the correction does not

affect point estimates when the optimization problem is already numerically stable.
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Table D.2: Leblang Replication

FMLE SBI BR-FMLE BR-SBI

UA(SQ): Capital Controls −0.45 −0.36 −0.39 −0.35
(0.25) (0.25) (0.24) (0.24)

UA(SQ): Log(Reserves) 0.23 0.25 0.23 0.24
(0.06) (0.07) (0.06) (0.07)

UA(SQ): Overvalued −0.44 −0.42 −0.44 −0.39
(0.09) (0.22) (0.09) (0.15)

UA(SQ): Credit Growth −0.06 −0.07 −0.06 −0.07
(0.03) (0.03) (0.03) (0.03)

UA(SQ): U.S. Interest −0.05 −0.05 −0.05 −0.05
(0.06) (0.06) (0.06) (0.06)

UA(SQ): Service −0.03 −0.03 −0.03 −0.03
(0.05) (0.05) (0.05) (0.05)

UA(SQ): Contagion −0.12 −0.12 −0.11 −0.12
(0.05) (0.05) (0.05) (0.05)

UA(SQ): Prior Attack −0.12 −0.12 −0.12 −0.12
(0.05) (0.05) (0.05) (0.05)

UA(Devalue): Devaluation −3.66 −3.59 −3.62 −3.55
(0.30) (0.26) (0.29) (0.28)

UA(Defend): Defense −3.14 −3.08 −3.05 −2.94
(0.29) (0.31) (0.30) (0.33)

UB(Defend): Const. 0.43 −0.20 0.29 −0.16
(0.78) (0.78) (0.77) (0.77)

UB(Defend): Unified Gov’t −0.36 −0.06 −0.35 −0.04
(0.36) (0.45) (0.35) (0.44)

UB(Defend): Log(Exports) −0.20 −0.29 −0.18 −0.26
(0.17) (0.23) (0.17) (0.22)

UB(Defend): Pre-election 1.66 2.23 1.42 1.90
(0.75) (0.93) (0.69) (0.86)

UB(Defend): Post-election 1.06 1.10 0.93 0.96
(0.59) (0.72) (0.56) (0.70)

UB(Defend): Right Gov’t −0.94 −1.54 −0.82 −1.34
(0.45) (0.66) (0.43) (0.62)

UB(Defend): Real Interest 1.80 1.24 1.63 0.89
(0.60) (0.64) (0.59) (0.52)

UB(Defend): Capital Control 0.07 0.66 0.20 0.57
(0.76) (0.80) (0.74) (0.79)

UB(Defend): Log(Reserves) 0.31 0.59 0.29 0.51
(0.17) (0.20) (0.16) (0.19)

Observations 7240 7240 7240 7240
Notes: Standard errors in parenthesis
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