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A Summary statistics and validity checks

In this appendix, I report summaries of the main independent variables. Table A.1 reports the

summary statistics and sources for all the independent variables used in the main model.

Table A.1: Independent Variable Summaries

Variable Min Mean Max Source

New state 0.00 0.05 1.00 COW
Population (logged) 2.94 9.91 14.06 NMC

Ethnic Frac. 0.00 0.50 1.00 Fearon and Laitin (2003)
Territorial −10.00 −0.61 10.00 UCDP

Polity2 0.00 0.47 0.93 Polity IV
Oil 0.00 0.14 1.00 World Bank & Fearon and

Laitin (2003)
Mount. Terrain (logged) 0.00 2.56 4.56 Fearon and Laitin (2003)

GDP pc (logged) −1.61 0.99 4.68 Penn World Table
Mil. Per. pc (logged) 0.00 4.52 8.52 NMC
Other groups (logged) 0.00 2.04 3.71 CONIAS & MARS

As a check of the data, I also consider a Heckman-selection model to see if we can reproduce some

of the findings from Fearon and Laitin (2003). This analysis serves as a check on the face-validity of

the data. For the selection model we use a non-violent dispute (outcomes BD and CD) as the first

step’s dependent variable and a violent conflict as the second step’s outcome (as in Bartusevičius

and Gleditsch 2018). All of the variables from the main model are included with population and

new state both only entering the selection equation to satisfy the exclusion restriction. Note that

this is not a replication exercise as I use different variables and a different model specification, but

rather this is just to see if this data provides results that match these canonical results on civil

conflict onset. The results of this exercise are presented in Table A.2.

In the selection model we see a few results that line up with the standard Fearon and Laitin (2003)

results. Notably, we see that being an oil exporter and having a large proportion of mountainous

terrain is associated with a larger risk of conflict, while proxies for state power (GDP per capita

and military personnel per capita) are associated with a lower risk of conflict. Overall, these basic

results match with standard civil conflict results and provide some validity to the CONIAS data.

For more of these types of validation exercises see Bartusevičius and Gleditsch (2018).
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Table A.2: Validating the data with previous results

Dependent variable:

Non-violent dispute Violent conflict
New state 1.01∗∗∗

(0.13)
Population 0.02

(0.05)
Oil 0.15 0.14∗

(0.10) (0.08)
GDP per capita −0.05 −0.09∗∗∗

(0.05) (0.03)
Democracy 0.01∗∗ −0.002

(0.01) (0.004)
Democracy squared −0.0003 0.001

(0.001) (0.001)
% Mountainous terrain −0.004 0.05∗∗

(0.03) (0.02)
Military personnel per capita −0.02 −0.03∗

(0.04) (0.02)
Ethnic fractionalization −0.14 0.18∗

(0.14) (0.10)
Other groups 0.03 −0.001

(0.05) (0.04)
Constant −1.64∗∗∗ 0.84∗∗∗

(0.33) (0.19)

Observations 3,513
Log Likelihood −878.60
ρ −0.20

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

B Episodic data

In this appendix, I consider a different approach to aggregating the data. Specifically, here I look

at the episodes in terms of a government-group-episode rather than the government-group-decade.

Each government-group pair now only enters the data once and only the most extreme outcome of

the interaction is considered. The main effect here is to reduce or limit the number of status quo

observations.

The results from the episodic data are reported in Table B.1. Here we see that the estimates

are largely unchanged, although there are some minor differences. Most importantly however,
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Table B.1: Punishment estimates for episodic data

Estimate Standard Error
Constant -2.08 0.69
Democracy 0.04 0.04
Democracy squared -0.01 0.01
Other groups -1.15 0.50
Military personnel per captia (log) -0.02 0.12
Separatist dispute -0.05 0.39
Log-likelihood = −784.46
Observations = 406

the punishment parameters in ā are roughly the same magnitude and direction. As with the

dyad-decade data, we see that on average groups expect to be punished for backing down in a

dispute and that these punishments are relatively sizable compared to the group’s other payoff

parameters. Interestingly the coefficient on the number of other groups is notably larger and is

significant at conventional levels. However, far fewer observations in this model satisfy the sensible

payoff restrictions, which suggests that the decade level aggregation provides better model fit.

C Fixed-effects approaches

In this appendix, I consider both country-specific and then group-specific fixed-effects approaches

to specifying the punishment parameters ā. The pseudo-likelihood routines exhibited signs of nu-

merical instability, which made standard error estimation unreliable. As such, no standard errors

are reported; the values in this section are best thought of as a model calibration exercise.

The country-specific punishments are presented in Figure C.1, while the group-specific results

are presented in Figure C.2. A few interesting results are apparent. First, the estimates are

overwhelmingly negative, further supporting the findings in the main text. For almost all groups

backing down is, on average, a very costly proposition. Second, there is noticeable heterogeneity in

the estimates. Some groups expect much harsher penalties than others. This results represents a

very interesting venue for future work: where do these differences comes from and what attributes

of groups makes larger punishments more likely? Sadly data limitations on group-level covariates

preclude such an analysis at this time, although the number of other potential groups still correlates

strongly with these measures (p < 0.05).
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Figure C.1: Calibrated estimates of ā with country fixed effects
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Figure C.2: Calibrated estimates of ā with group fixed effects
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D Additional robustness checks

In this appendix, I consider extensions to the main model with respect to the punishment parameters

ā, the sample used, and measurements of key concepts. Across these models we are interested in

whether the constant term remains negative and significant and whether the number of other groups

remains a significant correlate of the expected punishment.
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E Estimation details

Recall that the equilibrium of the model can be described as a system of three equations, where p∗

is an equilibrium only if p∗ = Ψ(p∗; θ). We now write out the full form of this system of equations:

p∗c = 1− Φ

(
SR − (1− p∗r)VR

p∗r
− W̄R

)
Φ

(
SR − (1− p∗r)VR

p∗r
− ā
)
≡ f(p∗r ; θ), (E.1)

p∗e = Φ2

(
W̄R − ā√

2
, W̄R −

SR − (1− p∗r)VR
p∗r

;
1√
2

)/
f(p∗r ; θ) ≡ h(p∗r ; θ), (E.2)

and

p∗r = Φ

(
h(p∗r ; θ)W̄G + (1− h(p∗r ; θ))VG − CG

h(p∗r ; θ)

)
≡ g ◦ h(p∗r ; θ). (E.3)

In the above, Φ(x) is the standard normal cumulative distribution function (CDF) and Φ2(x, y; ρ)

is the standard bivariate normal CDF (σ2x = σ2y = 1) with correlation ρ. Notice that p∗r completely

pins down the equilibrium: Equations E.1 and E.2 are R’s best responses to p∗r , while Equation E.3

is G’s best response to h(p∗r ; θ), as such we can rewrite the system as p∗ = Ψ(p∗r ; θ). Because this

is not an original model, I do not derive these expressions of the choice probabilities except to note

the probabilities are all formed based on ordinary comparison of the expected utility of an action

compared to private information as in nearly all random utility models (e.g., Signorino 1999). More

thorough discussions of the derivations can be found in Lewis and Schultz (2003) or Jo (2011).

Let yd ∈ {SQ,CL,BD,CC} denote the outcome of a group and government dyadic observation

d = 1, . . . , D. To estimate the parameter vector β, we start by constructing the multinomial log-

likelihood

L(β|y) =

D∑
d=1

I(yd = SQ) log [1− f(pr,d;β)] + I(yd = CL) log [f(pr,d;β)(1− g(h(pr,d;β)))]

+ I(yd = BD) log [f(pr,d;β)g(h(pr,d;β))(1− h(pr,d;β))] (E.4)

+ I(yd = CC) log [f(pr,d;β)g(h(pr,d;β))h(pr,d;β)] ,

where pr,d is found by solving Eq. E.3 for each observation at every guess of β and I(·) is the indicator

function. Ideally, we want to find the values of β that maximize this log-likelihood. However, it
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is well known that this game admits multiple equilibria under many reasonable sets of parameters

(Crisman-Cox and Gibilisco 2019; Jo 2011), which makes this task less than straightforward.

In particular, Crisman-Cox and Gibilisco (2019) demonstrate that Eq. E.4 is not well defined

because multiple equilibria are possible and using Eq. E.4 is problematic for estimation even if there

is a unique equilbrium at the true parameters values. Specifically, this issue means that any given

guess of the parameter vector could be consistent with multiple values of pr for each observation

and can consequently produce multiple log-likelihood values (which is to say that the above log-

likelihood is a correspondence rather than a function). As a result of this multiplicity, standard

optimization techniques will frequently converge at incorrect estimates (incorrect in the sense of

not actually maximizing Eq. E.4). They also note that standard refinements, such as the Intuitive

Criterion or regularity, do not provide any relief here as all equilibria of this game will survive

the refinements. Likewise, they show that that while other ad-hoc refinements can be employed to

eliminate the multiplicity, they will introduce severe discontinuities into the above log-likelihood and

make direct optimization of Eq. E.4 substantially less feasible (and the number of discontinuities

tends to increase with the number of observations).

As a result of these concerns I use the nested pseudo-likelihood (NPL) estimator they propose to

find the parameters of interest.1 This estimation procedure sidesteps the problems associated with

multiple equilibria by assuming that equilibrium selection is a function of the observed covariates.

To put this another way, this approach imposes an equilibrium selection rule that is empirical, rather

than theoretical, and allows the data to tell us which equilibrium the actors reach. The estimation

routine proceeds as follows:

1. The equilibrium choice probabilities pr,d and pe,d are estimated using a flexible method (in

this case a random forest) that relates the decision nodes to all the observed covariates. These

initial estimates of equilibrium behavior need not, and likely will not, satisfy the equilibrium

conditions in Equations 1-3, but this is not an issue as these probabilities only serve as an

initial guess in an iterative process.

2. Estimate β by maximizing the log-pseudo-likelihood with the equilibrium quantities fixed to

the current estimates of pr,d and pe,d.
1Specifically, I use their R package (sigInt) for estimation and analysis.
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3. Using the estimates of β from step 2, update the estimates of pr,d and pe,d using best-response

functions g and h, respectively.

4. Iterate steps 2 and 3 until convergence.

The log-pseudo-likelihood from step 2 is given by:

PL(β|y, p̂) =
D∑

d=1

I(yd = SQ) log [1− f(p̂r,d;β)] + I(yd = CL) log [f(p̂r,d;β)(1− g(p̂e,d;β))]

+ I(yd = BD) log [f(p̂r,d;β)g(p̂e,d;β)(1− h(p̂r,d;β))] (E.5)

+ I(yd = CC) log [f(p̂r,d;β)g(p̂e,d;β)h(p̂r,d;β)] ,

where p̂ = (p̂e,d, p̂r,d)Dd=1 refers to the current estimates of the choice probabilities from steps 1 and

3. Notice that the equilibrium quantity pr,d is no longer endogenously defined and so it does not

have to computed at every optimization step; this means that the indeterminacies/discontinuities in

Eq. E.4 are not present in the pseudo-likelihood function. The intuition behind this approach is that

if we know the true equilibrium choice probabilities we could fix pr,d to these values in Eq. E.4, which

would turn it into a well-behaved and continuous function. However, since we do not know these

choice probabilities we estimate them from the observables to generate a feasible estimator. The

iterative process means that the NPL estimates will be in equilibrium at convergence and overall

the estimation routine will be both better and faster than trying to directly optimize Eq. E.4. For

more details see Crisman-Cox and Gibilisco (2019).
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