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Abstract

Signaling games are central to political science but often have multiple equilib-

ria, leading to no definitive prediction. We demonstrate that these indetermi-

nacies create substantial problems when fitting theory to data: they lead to ill-

defined and discontinuous likelihoods even if the game generating the data has

a unique equilibrium. In our experiments, currently used techniques frequently

fail to uncover the parameters of the canonical crisis-signaling game, regardless

of sample size and number of equilibria in the data generating process. We

propose three estimators that remedy these problems, outperforming current

best practices. We fit the signaling model to data on economic sanctions. Our

solutions find a novel U -shaped relationship between audience costs and the

propensity for leaders to threaten sanctions, which current best practices fail

to uncover.
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1 Introduction

Political scientists use signaling games to analyze phenomena across practically

all subfields. Scholars of international relations in particular use the models to ad-

dress questions about economic sanctions (Lacy and Niou 2004; Lektzian and Sprecher

2007), crisis bargaining (Tarar and Leventoğlu 2009), escalation in interstate disputes

(Schultz 1999), and terrorism (Bueno de Mesquita and Dickson 2007; Lapan and San-

dler 1993). As a result of this ubiquity, scholars structurally estimate increasingly

more complicated signaling models (Bas, Signorino and Whang 2014; Kurizaki and

Whang 2015; Lewis and Schultz 2003; Wand 2006; Whang 2010a; Whang, McLean

and Kuberski 2013). Advocated by the movement for empirical implications of the-

oretical models, the structural approach allows researchers to account for strategic

interdependence in the data generating process, estimate theoretical parameters of

interest, and conduct counterfactual policy analysis in the absence of experimental

conditions.

Despite these benefits, political scientists still face substantial theoretical and

computational hurdles when estimating signaling games. In these games, each player

knows her private information at the beginning of the interaction and behavior is

characterized by perfect Bayesian equilibria. The most pressing problem is how to

build a coherent empirical signaling model that smooths out issues arising from the

multiplicity of equilibria common to these games. In this paper, we address this

problem by adapting three techniques from the dynamic games and industrial orga-

nization literatures (e.g., De Paula 2013; Ellickson and Misra 2011) to estimate the

canonical crisis-signaling model in Lewis and Schultz (2003). We demonstrate that

they outperform current best practices—in terms of statistical performance and com-

putational feasibility. Through a series of experiments and applications, we argue
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that these solutions are well suited for the simpler, but far more influential, models

in political science.

Current best practices for estimating the crisis-signaling model use variants of

the maximum likelihood (ML) routine proposed by Signorino (1999) to estimate the

parameters of extensive-form games with quantal-response equilibria (QRE). In these

best practices, a characterization of the game’s perfect Bayesian equilibria is used

to derive a likelihood function for the observed data. Then a numerical optimizer

maximizes this likelihood function by computing an equilibrium for every observation

at every guess of the parameters. While straightforward, the procedure sidesteps a

substantial problem in practice: an equilibrium is computed as if it is unique. Un-

like the QRE models in McKelvey and Palfrey (1998) and Signorino (1999), multiple

perfect Bayesian equilibria may exist in the crisis-signaling game under reasonable

payoff parameters. This multiplicity creates an indeterminacy in the likelihood func-

tion, leading to inconsistent estimates (Jo 2011). Hereafter, we call the ML routines

that ignore multiplicity “traditional” ML (tML), reflecting current practices (e.g.,

Bas, Signorino and Whang 2014; Kurizaki and Whang 2015; Whang, McLean and

Kuberski 2013; Zeng 2019).

Past justifications for estimating crisis-signaling games with the tML routine rely

on either using refinements to reduce the number of equilibria (e.g., Jo 2011) or veri-

fying equilibrium uniqueness at the point estimates while ignoring multiplicity during

estimation (e.g., Bas, Signorino and Whang 2014). We show that neither adequately

solves the problem. Regarding the former, we prove formally that all equilibria of the

crisis-signaling game almost always satisfy the regularity refinement, one of the most

stringent in the literature (van Damme 1996). That is, equilibria are equally robust
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to standard refinements.1 Nonetheless, researchers could adopt an ad hoc selection

rule (e.g., select the equilibrium maximizing the likelihood), but we show that this

approach generates discontinuities in the tML’s likelihood function. Furthermore, the

number of discontinuities can grow as the sample size increases. Thus, selection rules

not only necessitate extraneous computations to identify the equilibrium of interest

at every optimization step, but they also require maximization of discontinuous ob-

jective functions. These computational complexities dramatically reduce the tML’s

already poor feasibility. Indeed, several scholars have abandoned the structural enter-

prise for reduced-form alternatives citing feasibility concerns (Gleditsch et al. 2018;

Trager and Vavreck 2011).2

Regarding the latter, likelihood functions may be evaluated at parameter values

under which multiple equilibria exist even if there is a unique equilibrium in the

game generating the data. For example, optimization routines often take incorrect

guesses at the parameters as they search for the ML estimates. As such, the routines

may potentially evaluate the likelihood function at parameters under which multiple

equilibria exist even if there is a unique equilibrium at the true parameters in the

data generating process. This indeterminacy at incorrect parameter values allows the

likelihood function to be evaluated incorrectly and leads to the same discontinuities

discussed above, making it difficult to find the correct values. As such, we find that

tML routines demonstrate consistently poor performance across a variety of experi-

mental settings, regardless of sample size, use of global optimizers, or the number of

equilibria in the game generating the data.

In contrast, we treat equilibrium selection as an empirical problem by allowing

1Refinements on off–the–path beliefs such as Divinity or the Intuitive Criterion are inconse-
quential as all histories are reached with positive probability in all equilibria. We also investigate
best-response stability, which does not guarantee uniqueness, but does eliminate some equilibria.

2Gleditsch et al. (2018) refer to the Lewis and Schultz (2003) model as “demanding” in justifying
their alternative approach.
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it to depend on observables. Indeed, having multiple equilibria allows the empiri-

cal model greater flexibility in matching real-world interactions. Furthermore, our

solutions accommodate empirical selection in a manner that smooths out the issues

created by multiple equilibria. Specifically, they rely on the observation that fixing

the equilibrium beliefs to their true values when computing best responses removes

the indeterminacies in the likelihood without generating discontinuities. Of course,

these equilibrium quantities are unobserved, so our proposed solutions rely on esti-

mating them. Specifically, we begin with the assumption that equilibrium strategies,

and hence beliefs, can be inferred from observables, either because we observe several

interactions from the same equilibrium or because dyads with similar covariates play

similar equilibria. For an example in the international relations context, the latter

suggests that countries with high levels of trade likely play the game similarly to each

other but differently from non-trading countries. Estimating the equilibrium strate-

gies in a first stage and using them in place of their true values in a second stage

provides a feasible pseudo-likelihood (PL) solution to the problem of estimating the

game’s parameters of interest.

While relatively innocuous in principle, this approach requires accurate estimates

of equilibrium quantities. We therefore introduce two additional methods to alleviate

this reliance on first-stage estimates. The first is a nested-PL (NPL) approach that

uses the PL estimates to update actors’ beliefs which were estimated in the first stage,

allowing the analyst to then update the payoff parameters. The process is iterated

until convergence, making the final estimates less dependent on the initial guesses of

the equilibrium strategies. The second approach is to estimate equilibrium beliefs as

dyad-specific (game-specific) parameters in a single-stage constrained-ML estimator

(CMLE) that maximizes a likelihood function while forcing the estimates to satisfy

equilibrium conditions. While this approach does not require initial estimates of the
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equilibrium beliefs, it does requires panel-like data wherein we assume that each dyad

plays from the same equilibrium every time it interacts. In other words, each time

the U.S. and China interact, they play the same equilibrium—which may be very

different than how the U.S. and Canada interact.3

All three of our proposed estimators outperform the tML by reducing variance

and bias by orders of magnitude. Specifically, the CML is almost always the best

performer, but it is also the most difficult to implement. The PL and NPL are very

easy to implement and both work very well in a variety of settings. We also provide

an R package to fit crisis-signaling models using the PL and the NPL.

By studying the widely used crisis-signaling model, this paper advances our un-

derstanding about the challenges that arise when connecting theory to data. More

broadly, we demonstrate that theoretical issues such as equilibrium multiplicity, al-

though often cast as a nuisance to be refined away, have important consequences when

fitting models to data. Sidestepping these issues can result in mistaken substantive

conclusions. While we focus on a specific game that holds a prominent place in inter-

national relations, identical problems arise in other games with multiple equilibria,

e.g., games with simultaneous moves or infinitely repeated interactions. Our analysis

should therefore encourage political scientists to structurally estimate a wider array

of models.

Our empirical application uses the crisis signaling game to study the strategic

incentives of sanction threats and impositions (as in Drezner 1998, 2003; Whang,

McLean and Kuberski 2013). Past work has shown that domestic audiences affect

sanction duration and effectiveness (Dorussen and Mo 2001; Krustev and Morgan

2011; Martin 1993; Whang 2010b) and that audience costs arise when leaders back

3This assumption can also be relaxed a bit by breaking dyads apart by time periods such as the
dyad-decade, as we do below, or by using case-specific knowledge to determine changes.
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down from sanction threats (Hart 2000; Thomson 2016). Yet scholars have not con-

nected audience costs to the initiator’s decision to threaten sanctions.4 We fill this

gap in the literature by fitting the crisis-signaling model to the Threat and Imposi-

tion of Sanctions (TIES) dataset. Our results indicate a novel U -shaped relationship

where only leaders with large or small audience costs more freely threaten sanctions,

as the former can credibly commit to such threats and the latter need not worry

about the consequences of backing down. Such a result would be lost in traditional

regressions that assume a monotonic relationship between audience cost measures and

outcomes. Furthermore, the vast majority of observations are located on one side of

the U -shaped curve: larger audience costs encourage leaders to threaten sanctions.

An important predecessor to this paper is Jo (2011) who demonstrates that mul-

tiple equilibria exist in the crisis-signaling game and that tML procedures ignoring

multiplicity do not perform adequately. Indeed, this is the major problem we ad-

dress in this paper, but we also build upon Jo’s endeavor in several ways. First, we

explicate the computational issues that arise when researchers attempt to address

multiplicity by either using refinements or verifying uniqueness post-estimation, in-

cluding how multiple equilibria create discontinuous likelihood functions. Second, we

provide three simple solutions to estimating the crisis-signaling games and benchmark

their performances in a variety of experimental settings. Third, we apply the estima-

tors to real-world data. While our solutions generally agree in sign and significance,

they diverge considerably from tML routines. We also show that the tML is highly

sensitive to implementation details. Our solutions remedy these issues.

4Exceptions to this include Peterson’s (2013) work on reputation costs and U.S. sanction threats
and a brief aside in Whang, McLean and Kuberski (2013). Similarly, features of domestic audiences
help to explain variation in the initiation of Word Trade Organization disputes (Chaudoin 2014).
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Figure 1: The canonical crisis-signaling game.

A

B SQ
(SA, SB)

ACD
(VA, CB)

BD
(ā+ εa, VB)

SF(
W̄A + εA, W̄B + εB

)

Challenge Not challenge

ResistNot resist

Fight Not fight

2 Model

States A and B compete over a good or a policy that is currently owned or

controlled by B. At the beginning of the game, the states observe private information.

State A observes (εA, εa), where εA and εa are additively separable payoff shocks to

A’s utility for war and backing down, respectively. Likewise, B observes εB which is

an additively separable payoff shock to its war utility. All private information (εA, εa

and εB) is independently drawn from a standard normal distribution.

Interaction proceeds according to Figure 1. First, A decides whether or not to

challenge B for control over the good or policy, and if A does not challenge, then the

game ends at node SQ with payoffs Si for each state i. Second, after a challenge,

B decides whether or not to resist A. If B does not resist, i.e., B concedes to A’s

demands, then the game ends at node CD, and payoffs are VA and CB for states A

and B, respectively. Finally, if B does resist, then A must decide whether to fight or

not. When A fights or stands firm, the states receive W̄i + εi at node SF . Similarly,

when A backs down and does not fight, the games ends at node BD with A receiving
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ā+ εa and B receiving VB.

Perfect Bayesian equilibria (equilibria, hereafter) for the game can be represented

as choice probabilities. Let pC and pF denote the probability that A challenges and

fights (conditional on challenging) B, respectively, and let pR denote the probability

that B resists. Let p = (pC , pR, pF ) denote a profile of choice probabilities. Fur-

thermore, let θ denote the vector of payoffs, i.e., θ =
(
ā, CB,

(
Si, Vi, W̄i

)
i=A,B

)
. The

following result is due to Jo (2011) and characterizes the equilibria of the game in

terms of a system of nonlinear equations.

Result 1 (Jo, 2011) An equilibrium p̃ exists, and p̃ is an equilibrium if and only if
it satisfies the following system of equations:

p̃C = 1− Φ

(
SA − (1− p̃R)VA

p̃R
− W̄A

)
Φ

(
SA − (1− p̃R)VA

p̃R
− ā
)
≡ g(p̃R; θ), (1)

p̃F = Φ2

(
W̄A − ā√

2
, W̄A −

SA − (1− p̃R)VA
p̃R

,
1√
2

)
(g(p̃R; θ))−1 ≡ h(p̃R; θ), (2)

and

p̃R = Φ

(
h(p̃R; θ)W̄B + (1− h(p̃R; θ))VB − CB

h(p̃R; θ)

)
≡ f ◦ h(p̃R; θ), (3)

where Φ is the CDF of the standard normal distribution and Φ2(·, ·, ρ) is the CDF of
the standard bivariate normal distribution with correlation ρ.

In words, for a fixed θ, an equilibrium is completely pinned down by B’s proba-

bility of resisting. In addition, the functions f , g, and h are best-response functions.

Specifically, the functions g and h compute A’s best response to B’s probability of

resisting pR, and function f denotes B’s best response to A’s probability of fighting.

Furthermore, Jo (2011) illustrates that multiple equilibria exist in a nontrivial set of

parameters, i.e., there exists several solutions to the equation f ◦ h(pR; θ) = pR.

Before proceeding two remarks about the model are in order. First, a key as-

sumption in these models concerns how the analyst specifies the variance-covariance

8



matrix of the payoff shocks (Schultz and Lewis 2005; Whang 2010a). Since Lewis

and Schultz’s (2003) first effort, several scholars have modified and generalized their

assumptions governing private information (Bas, Signorino and Whang 2014; Wand

2006; Whang 2010a). Our goal is not to argue or determine which specification is

better but to illustrate the computational difficulties that can arise from multiple

equilibria and the structural estimation of these games.5 As such, we adopt the com-

parably sparse but original specification, where the shocks are independently and

identically distributed according to the standard normal distribution. For complete-

ness, in Appendix A we consider Whang’s (2010) specification, demonstrate that

multiple equilibria can exist, and discuss how to modify our proposed procedures.

Second, researchers could change the model’s informational structure to ensure

that a unique equilibrium exists. The most obvious possibility would be to adopt the

quantal-response setup (McKelvey and Palfrey 1998; Signorino 1999). Bas, Signorino

and Whang (2014) call this the “independent agent” approach. Essentially, actors

are represented by different and independent agents at each of their assigned decision

nodes. Each actor’s agents have the same mean utilities over terminal nodes but the

utilities are subjected to independent payoff shocks, representing perceptual errors.

For example, we currently assume that A observes εA and εa at the beginning of the

interaction. Instead, A’s agent at the beginning of the game would not observe the

payoff shocks of A’s agent at its last decision node. In this case, A’s first agent is

uncertain about whether A’s second agent would stand firm or back down although

the first could compute the probability of each action ex ante.

The QRE framework entails nontrivial substantive differences from the current

model. Although the current information structure has the possibility of multiple

perfect Bayesian equilibria, it also generates learning and signaling incentives. When

5Schultz and Lewis (2005) provide one justification for the specification used here.
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State A decides to challenge B, she first observes the payoff difference between fighting

and backing down. Thus, when State B observes A issuing a challenge, B updates

her beliefs about whether A will fight or back down. Specifically, the amount of

information communicated can be measured as the difference between the prior and

the posterior probability that A fights:

∣∣∣∣ posterior︷︸︸︷
pF −Φ

(
W̄A − ā√

2

)
︸ ︷︷ ︸

prior

∣∣∣∣.

With the QRE information structure, the possibility of learning and signaling is null,

however. If A only observes εA and εa conditional on arriving at the decision to stand

firm or back down, then the state has no additional information to signal to state B

when it issues a challenge. Furthermore, if A’s preference are independent from B’s,

then B has no opportunity to learn about the preferences of its opponent.6

6Signorino (2003, p. 343) concludes that the assumption underlying the standard QRE approach
“is not innocuous. It greatly simplifies deriving the choice probabilities, but at a price: players
cannot update in the model.”
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3 Estimation: Problems and solutions

We consider D independent dyads or games. Each dyad is parameterized by

covariates xd and common payoff parameters β which determine the model’s payoffs:

θ(xd, β) =



SdA

SdB

VdA

CdB

W̄dA

W̄dB

ād

VdB



=



xdSA
· βSA

0

xdVA · βVA

xdCB
· βCB

xdW̄A
· βW̄A

xdW̄B
· βW̄B

xdā · βā

xdVB · βVB



. (4)

Each xd(·) vector above contains zero or more explanatory variables.7 Hereafter, we

are interested in the β parameters that are common across all games rather than

θ(xd, β).

Let β∗ denote the parameters in the data generating process. Along with β∗, the

covariate vector xd determines the equilibrium p∗(xd, β
∗) = (p∗dC , p

∗
dF , p

∗
dR) that gen-

erates T ≥ 1 outcomes {ydt}Tt=1, where ydt is a terminal node in {SQ,CD, SF,BD}.

Thus, p∗d(xd, β
∗) is a solution to the system of equations in Result 1, parametrized by

payoffs θ(xd, β
∗). Thus the data are hierarchical: a complete observation is a dyad

d with a single vector of exognenous traits xd and a sequence of outcomes {ydt}Tt=1.

While our structure reflects a common setup in the econometric literature on esti-

mating games (e.g., Su 2014), it implies that T means something slightly different

here than it does in common panel or time-series-cross-sectional (TSCS) data. With

7As in Lewis and Schultz (2003), identification depends on there being at least one variable
(including the constant) for each player that does not appear in all of that player’s utilities.
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TSCS data, a complete observation d is composed of a covariate vector paired to a

single outcome and “T” is the number of complete observations associated with some

unit. In contrast, we envision an equilibrium of the game generating T ≥ 1 outcomes.

Of course, analysts can always set T = 1 in applications if they are concerned about

this setup.8

There are two important assumptions implicit in our empirical setup. First, we

assume that two states play from the same equilibrium conditional on xd, rather than

allowing the equilibrium to vary over within-dyad observations. Substantively, this as-

sumption reflects the international system which has several forces incentivizing states

to focus on a single equilibrium over time, including persistent international norms/in-

stitutions (Keohane 1984), a focal point specific to these two states (Schelling 1960),

or other factors that emerge from their long time spans and repeated interaction.

Technically, this is a standard assumption that is required in the recent empirical

literature on estimating games with incomplete information (Bajari, Benkard and

Levin 2007; Ellickson and Misra 2011). An alternative approach might assume that

states play from the same equilibrium across dyads rather than within dyads. Such

an assumption is more restrictive than ours, i.e., it requires the U.S. to interact with

China the same way it interacts with Canada, which we do not require. Additionally,

such an approach introduces an additional problem: because dyads are parameterized

by different covariates, the number of equilibria may differ between two dyads even

for a fixed θ, making it impossible to compare equilibria across observations.9

8One such concern is this structure may overstate the amount of information in the data due to
the hierarchical setup. While increasing T provides more information about the choice probabilities,
which makes the estimates of β more precise, the asymptotic standard errors provided in Appendix
D.1 account for this structure.

9Consider the parameter values in Table 1, under the multiple equilibria setting with D = 3,
where x1 = − 2

3 , x2 = 2
3 , and x3 = 5

3 . According to Figure 2, there exist multiple equilibria in the
second dyad but a unique equilibrium exists in the first and third. The third dyad indicates that the
second should play from the largest equilibrium, but the first dyad indicates that the second should
play from the smallest.
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Table 1: Parameters for Monte Carlo experiments.

Utility Multiple equilibria Unique equilibrium

SdA 0 0
SdB 0 0
VdA 1 1
CdB 0 0
W̄dA −1.9 −1.8
VdB 1 1
W̄dB −2.9 + 0.1xd −2.45 + 0.1xd
ād −1.2 −1.2

Second, when dyads play T > 1 rounds of play, we assume that a given equi-

librium of the static game is played. Such an assumption can be justified if states

play the game for a finite number of periods and private information is drawn in-

dependently over time.10 This assumption is a matter of convenience because our

goal is to address the technical challenges that arise when estimating games with

multiple equilibria even in the most straightforward environments. An added benefit

of this simplicity is that we can easily enumerate the set of equilibria, allowing us to

illustrate how equilibrium selection creates discontinuous likelihoods and the compu-

tational inefficiency of the tML in these situations. Nonetheless, scholars might be

concerned about serial dependence in the private information shocks and long-term

optimizing states. While we acknowledge the importance of considering dynamics in

international relations, such concerns would require a dynamic theoretical model in

order to address how repeated interaction affects states which is beyond the paper’s

scope.11

10The assumption can also be justified when the two states interact for an infinite number of
periods if private information is not persistent and states use stationary strategies.

11For an example of structurally estimating a dynamic game of crisis escalation see Crisman-Cox
and Gibilisco (2018). A key property of their model is that states have no signaling incentives,
i.e., private information is sufficiently transitory. With signaling incentives, a fully dynamic model
becomes substantially more intractable.

13



Throughout we consider two numerical examples. Table 1 contains two sets of

parameters that we use to demonstrate cases with a unique and with multiple equi-

libria. In both settings we include one regressor, xd ∼ U [0, 1], which enters B’s war

payoff.12 There are a few things to note about the parameters in Table 1. First,

we normalize the status-quo payoffs Si and B’s concession payoff to zero, following

standard identification assumptions (Jo 2011; Lewis and Schultz 2003). Second, the

differences in the two columns are minor: by making small adjustments to only two

parameters we can easily move into and out of situations were multiple equilibria

exist. Third, these parameters reflect reasonable payoffs that satisfy the restrictions

in Schultz and Lewis (2005). In addition, both war and backing down from threats

are worse than the status quo, and actors only receive positive payoffs when their

opponent backs down.

To illustrate the two settings, Figure 2 graphs the game’s equilibrium correspon-

dence with respect to xd. In the left-hand panel of Figure 2, there are multiple

equilibria for values of xd between 0 and 1. Here, the orange triangles in the plots

illustrate how we determine which equilibria generate the data in our Monte Carlo

experiments. Specifically, when xd ∈
[
0, 1

3

)
, we use the smallest equilibrium proba-

bility of resisting pR to generate the data for dyad d. When xd ∈
(

2
3
, 1
]
, we use the

largest. Finally, we use the moderate equilibrium in the remaining case. Notice that

the equilibrium correspondence is smooth in the sense that it is upper hemicontinuous

but selection creates discontinuities when modeling the probability of resistance pdR

as a function (not correspondence) of the covariate xd. The right-hand side of Figure

2 graphs the equilibrium correspondence under parameters shown in the third column

of Table 1, where there is a unique equilibrium for all values of xd.

12A more realistic Monte Carlo experiment with multiple regressors can be found in Appendix
C.4. Overall the results there confirm what we report here in the simpler setup.
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Figure 2: The equilibrium correspondences for numerical examples

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

Multiple Unique

−0.67 −0.33 0 0.33 0.67 1 1.33 1.67−0.67 −0.33 0 0.33 0.67 1 1.33 1.67
0.2

0.4

0.6

0.8

Regressor xd

E
qu

ili
br

ia
, p

d
R

● Not selected Selected

3.1 Problems with current practices

The current best practices in the literature closely follow the ML techniques dis-

cussed in Signorino (1999). For every β, an equilibrium to game d is computed by

solving the system of equations in Result 1; call this solution p(xd, β). Note that this

solution is not necessarily unique, and following standard practices, we do not search

for all solutions.

Using p(xd, β), we define the probability of reaching each of the terminal nodes as

Pr[ydt | p(xd, β)] =



(1− pdC) if ydt = SQ

pdC(1− pdR) if ydt = CD

pdCpdR(1− pdF ) if ydt = BD

pdCpdRpdF if ydt = SF.

(5)

Under this setup, the log-likelihood takes the form

L(β | Y ) =
D∑
d=1

T∑
t=1

log Pr[ydt | p(xd, β)], (6)
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and the tML estimates attempt to maximize this log-likelihood.

As described in Jo (2011), the current approach evaluates the likelihood function

as if a unique equilibrium exists. That is, for each guess of the parameters, we com-

pute an equilibrium, p(xd, β), using a numeric equation solver. If there are multiple

equilibria, then there is an indeterminacy in how analysts evaluate p(xd, β). If the

equation solver of choice selects the wrong equilibrium, i.e., not the one in the data

generating process, then the likelihood is computed incorrectly, resulting in mistaken

inferences. To better see this problem, suppose there are D dyads, and fixing pa-

rameters β, suppose each dyad admits n > 1 equilibria. In this case, there are nD

possible values of the log-likelihood for just this one guess at the parameter vector.

Standard equation solvers return just one of the nD combinations. As D increases,

it is increasingly implausible that the correct selection is made. An implication of

this discussion is that two researchers can reach conflicting conclusions even when

analyzing the same data if they implement the tML estimator with different equation

solvers. We illustrate this problem in our empirical application.

Before proceeding, we first consider potential fixes to the commonly standard ML

routine. To this end, we first ask: Can multiplicity in the crisis-signaling game be

solved with traditional refinements? If so, tML techniques can be used so long as they

are adjusted to always select the surviving equilibrium. Refinements based on off-the-

path-of-play beliefs, such as the Intuitive Criterion or Divinity, are inconsequential

here as all histories are reached with positive probability in every equilibrium. Because

of this, an analyst may be tempted to use a refinement called regularity, which sub-

sumes several other refinements such as perfection, essentialness, and strong stability

(van Damme 1996).13 As we show in Appendix B, for almost all parameter values,

13For a formal definition, see Appendix B.
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all equilibria of the crisis-signaling game satisfy regularity.14 Most importantly, the

result demonstrates that multiplicity cannot be “refined away” using standard crite-

ria, and the predictive indeterminacy that plagues traditional maximum likelihood

methods still persists.15

With traditional refinements offering little headway, analysts may turn to ad hoc

selection criteria such as selecting the equilibrium that maximizes a convex sum of A

and B’s payoffs. But determining the selection criterion forces an additional modeling

choice onto the analyst. As we show in our empirical application, such a choice is

consequential and can heavily influence the resulting estimates. Analysts could also

consider empirical selection: for each dyad, select the equilibrium that maximizes

the dyad’s contribution to the likelihood. This would also remove the indeterminacy

in p(xd, β), but its implementation has several drawbacks. Researchers would need

to reliably compute all equilibria for every dyad at every guess of the parameters, a

computationally demanding task. In addition, imposing this (and other) selection cri-

terion introduces discontinuities in the likelihood function as the number of equilibria

and hence the solution to the criterion varies across different parameter values.16

To illustrate this, Figure 20 in Appendix F graphs the likelihood as a function

of one parameter, while all remaining parameters are held at their true values. Note

that the true value indeed maximizes the likelihood, but discontinuities arise as the

number of equilibria change in different areas of the parameter space. Furthermore

the number of discontinuities and equilibrium computations both increase in D. The

14We say that a property holds for almost all parameters θ, if it does not hold at most in a closed,
Lebesgue-measure-zero subset of R8.

15We also consider best-response stability. We prove formally that if multiple equilibria exist,
then at least one is best-response unstable. Nonetheless, if multiple equilibria exist, then there are
generally multiple best-response stable equilibria. For example, in the left-hand graph in Figure 2,
the largest and smallest equilibria are best-response stable, while the middle is unstable.

16Technically, this problem arises because the equilibrium correspondence, and hence likelihood
correspondence, is upper, but not lower, hemicontinuous.
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problems are further exacerbated if the remaining parameters are not known and need

to be estimated as well.

3.2 Pseudo-likelihoods

Our first proposal involves a two-step estimator based on Hotz and Miller (1993)

that essentially removes the indeterminacy associated with multiple equilibria by

using the observed data to select appropriate equilibrium beliefs. In the first step,

we produce consistent (in T or D) estimates of the equilibrium choice probabilities

p∗dR and p∗dF , for d = 1, ..., D. We label these estimates p̂R = (p̂1R, ..., p̂DR) and

p̂F = (p̂1F , ..., p̂DF ). While in theory we are agnostic about how an analyst obtains

the first-stage estimates, in practice we have found that random forests tend to work

very well across a variety of sample sizes and settings.

Next, consider how actors best respond to these first-stage estimates. By Result

1, the best-responses take the form:

p̂(p̂dR, p̂dF ;xd, β) =


g(p̂dR;xd, β)

h(p̂dR;xd, β)

f(p̂dF ;xd, β)

 . (7)

In other words, if actors play the game as if they believed their opponents use strate-

gies estimated in the first stage, p̂dR and p̂dF , then p̂ are their best responses. These

best-responses approach their true values as the first-stage estimates become more

accurate. Using the first-stage estimates and the associated best-responses, we build

the pseudo-log-likelihood function as

PL(β | p̂R, p̂F, Y,X) =
D∑
d=1

T∑
t=1

log Pr[ydt | p̂(p̂dR, p̂dF ;xd, β)]. (8)
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What is the intuition behind the estimator? If we know the equilibrium choice

probabilities, i.e., p̂dR = p∗dR and p̂dF = p∗dF for all dyads d, then the pseudo-likelihood

is the likelihood in Equation 6 with the correct equilibrium selection. In addition,

it is a continuous function of the parameters β. The equilibrium choice probabilities

are unobserved variables, however. Thus, we estimate them from the data, which

is possible given our assumptions that two states play from the same equilibrium

conditional on xd. For example, because the states in dyad d are playing from one

equilibrium, when T is large, we can estimate p∗dR and p∗dF using frequency estimators:

p̂∗dR =

∑T
t=1 I [ydt ∈ {SF,BD}]∑T

t=1 I [ydt ∈ {SF,BD,CD}]
and p̂∗dF =

∑T
t=1 I [ydt = SF ]∑T

t=1 I [ydt ∈ {SF,BD}]
,

where I is the indicator function. As we observe more draws from the same equilib-

rium, i.e., T goes to infinity, the frequency estimates converge to their true values

because the equilibrium p∗d puts positive probability on all histories. Substituting the

frequency estimates into Equation 8 demonstrates that the pseudo-likelihood con-

verges to the true likelihood as T increases, and under standard regularity conditions

the PL estimates converge to the true ML estimates. Thus, by estimating equilibrium

beliefs from the data in a first-stage, we can select the appropriate equilibrium in a

continuous manner when estimating payoff parameters during the second stage.

In finite samples, frequency estimators may be impractical. One alternative is to

pool information across dyads and estimate the choice probabilities as functions of

covariates xd, albeit with highly flexible methods—hence our assumption that two

observationally equivalent dyads play from the same equilibrium. As mentioned, we

have found that random forests work particularly well in both our simulations and

applications. Nonetheless, the PL estimator may perform poorly if the first stage is

misspecified or imprecise. The two methods we discuss below attempt to overcome
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this issue.

3.2.1 Nested pseudo-likelihood

The NPL approach, proposed by Aguirregabiria and Mira (2007), builds on the PL

by using best responses to update the first-stage choice probabilities upon knowing

the PL estimates. This process is repeated until convergence. More precisely, the

NPL algorithm begins with the PL estimates,

(β̂NPL0 , p̂R,0, p̂F,0) = (β̂PL, p̂R, p̂F),

and for the kth iteration, set

p̂dF,k = h(p̂dR,k−1;xd, βk−1)

p̂dR,k = f(p̂dF,k−1;xd, βk−1)

β̂NPLk = argmax
β

PL(β | p̂R,k, p̂F,k, Y,X).

The algorithm is repeated until the parameters and choice probabilities cease chang-

ing. The intuition is to decrease the analyst’s reliance on correct first-stage estimates

by updating the choice probabilities with the new information captured in the esti-

mated payoff parameters.

Without a particular stability condition on the data generating process, the NPL

algorithm may fail to converge (Pesendorfer and Schmidt-Dengler 2010). Specifically,

if the data generating equilibrium is best-response stable, the above iteration will

converge to the correct equilibrium as long as the starting value is not too far away.

In contrast, if the data generating equilibrium is unstable, the above iteration may

not converge to the true equilibrium. In Appendix C.3, we consider how sensitive the
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PL and NPL are to unstable equilibria. Overall, we find that both the PL and the

NPL still outperform the tML even if best-response unstable equilibria dominate in

the data.

3.3 Constrained MLE

An alternative approach is to use a full-information CMLE, as proposed by (Su

and Judd 2012). Applied to this problem, we maximize the likelihood in Equation 6

subject to the equilibrium constraints in Result 1. Define

p̄(pdR;xd, β) =


g(pdR;xd, β)

h(pdR;xd, β)

pdR

 , (9)

then the CMLE solves the following problem:

max
β, pR

D∑
d=1

T∑
t=1

log Pr[ydt | p̄(pdR;xd, β)],

s.t. f ◦ h(pdR;xd, β) = pdR, d = 1, ..., D.

(10)

Su and Judd (2012) demonstrate that the CMLE is equivalent to the true MLE pro-

cedure in which equilibria are selected to maximize each dyad’s contribution to the

likelihood. Thus, the estimator is essentially using the data to select equilibria, which

is similar to the PL procedure where data were used to estimate equilibrium beliefs.

As mentioned above, modifying the tML to compute every equilibrium at every guess

of the parameters and to select the ones that maximize the likelihood dramatically

reduces its feasibility because it requires repeated equilibrium computations and in-

troduces discontinuities.
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The CMLE avoids these problems. By not requiring that pR satisfy the equilib-

rium condition at every step in the constrained optimization, the CMLE avoids any

equilibrium computation while ensuring that the objective function is well-behaved

and continuous. As such, the true maximum likelihood estimates are discovered with

a much lower computational burden than the corrected-tML discussed above. Addi-

tionally, the CMLE improves on the pseudo-likelihood procedures by eliminating the

need to rely on first-stage estimates, resulting in both bias and efficiency gains.

Despite these improvements, the CMLE has two drawbacks. First, the full-

information constrained optimization approach introduces D auxiliary parameters

in the form of p̂R; as such we need T > 1 in order use this estimator. In contrast,

the pseudo-likelihood approaches cover the T = 1 case. However, our Monte Carlo

experiments demonstrate that the CMLE performs well even with a small number of

within-game observations. Second, solving this constrained optimization problem re-

quires specialized —but still open source— software; Appendix D contains complete

implementation details.

4 Performance

We now evaluate the performance of the estimators in two settings: when there

are multiple equilibria in the data generating process and when there is a unique

equilibrium. We continue to use the parameter values from Table 1, where xd is

distributed standard uniform.17 Throughout, we use the ordinary implementation of

the tML as our baseline for comparison, which uses arbitrary equilibrium selection

17The results we present here are unchanged when we a more realistic Monte Carlo experiment
with multiple covariates in Appendix C.4.
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and Nelder-Mead’s simplex method to find the estimates. These implementation

choices match current practices as found in replication archives.18

To estimate equilibrium choice probabilities in the PL and NPL methods we use

random forests. There are two models in the first-stage, where the dependent variables

are the nonparametric frequency estimates of the probability that B resists (for p̂R)

and A fights (for p̂F). We fit the former only with observations in which A challenges,

and we fit the latter only with observations in which B resists. For predictors, we

include the one regressor xd.

We vary the number of dyads, D, between 25 and 200 and the number of within-

game observation, T , between 5 and 200 to create simulated datasets of various

sizes. For each combination of D and T , we draw xd from the standard uniform

distribution and then select the appropriate equilibrium that generates the data for

the corresponding dyad as shown in Figure 2. Finally, we use the simulated data to

estimate the game using all four estimators. Starting values for the PL and tML are

drawn from a standard uniform distribution, and the same values are used within

each Monte Carlo iteration. The CMLE and NPL use the PL estimates as starting

values.19 We repeat this process 1, 000 times for each pair of D and T and for each

of the parameter settings in Table 1.20

The main results of the experiment are summarized in Figures 3 and 4, which

18As the tML’s objective function contains discontinuities, gradient-free methods, such as Nelder-
Mead, are a common choice for avoiding expensive global optimization. We also considered global
and quasi-Newton methods our conclusions are unchanged. In contrast to the tML, our proposals
have continuous log-likelihood functions, and so we use the gradient based Newton-Raphson method
for the PL and NPL and a Newton-based interior point method for the CMLE.

19The choice of random starting values for the tML and PL reflect the fact that they are competing
methods in this experiment. In contrast, the CMLE and NPL are natural extensions of the PL
approach and use the PL to inform them. We return to this in Appendix E where we check the
tML’s performance when it is also started from the PL estimates.

20Within each Monte Carlo iteration, results are considered converged and recorded only if a
successful convergence code is returned by the optimizer in question and all the point estimates are
between −50 and 50.
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Figure 3: RMSE in signaling estimators with multiple equilibria.
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compare the logged root-mean-square error (RMSE) of the estimators. The first

thing we note is that the tML (blue, dashed line) performs consistently bad and

shows no improvement as the amount of data increases in either D or T . In many

cases, its performance worsens as T increases.21

Contrast these results to those from the other estimators, which generally all

improve with more data. The PL (green, solid line) tends to be best performing

estimator when both T and D are small. Additional analysis in Appendix C shows

that the estimator tends to have more bias than the others and that its strong perfor-

mance is driven by low variance. The NPL (pink, dot-dashed line) greatly improves

the bias associated with the PL method without adding too much variance, and as a

result, we see that it performs very well in most settings, particularly as the amount

of data increases. Overall, the CMLE (red, dotted line) tends to be the best. How-

21Appendix C contains additional Monte Carlo results relating to the bias, variance, convergence
rates, and computational time.
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Figure 4: RMSE in signaling estimators with a unique equilibrium
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ever, this great performance often comes at the cost of decreased convergence rates

and non-standard software choices (see Appendix D for more information).

Comparing Figures 3 and 4 reveals that the tML has uniformly poor performance

regardless of the number of equilibria that exist in the signaling game generating the

data.22 What explains the poor performance of the tML in the unique equilibrium

experiment? Even in this setting the tML’s likelihood function is often evaluated

at incorrect parameter values. For example, we pick starting values that are drawn

uniformly over the interval [0, 1]. These are obviously incorrect, and the optimizer

will need to search over the parameter space, evaluating the likelihood function at

incorrect parameter values. In some instances, dyads parameterized (incorrectly) by

these values will have multiple equilibria, and the objective function will need to select

an equilibrium in an ad hoc manner. This selection will lead to discontinuities and

22Figures 12 and 13 in Appendix C.2 compare the estimators’ bias and variance in the unique
equilibrium setting and illustrate that the tML has the worst performance on both measures.
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creates the possibility that an incorrect equilibrium is selected, i.e., an equilibrium

that has little relation to the one generating the data. These issues can lead even

more robust optimizers astray.

We also find that the tML appears to face numerical challenges during the optimzi-

ation process. Even in cases where we verify that the tML only considers candidate

parameter vectors that are associated with a unique equilibrium, we find that the

optimizer frequently converges to a wrong answer. These issues do not go away (and

often get worse) when we consider alternative optimization routines to the simplex

method, such as global or quasi-Newton methods. Additionally, with our empirical

example we find that very small implementation differences, including simply chang-

ing software versions, result in wildly different tML estimates. Overall, this level of

sensitivity indicates that the equilibrium computation in the tML’s likelihood creates

a highly nonlinear optimization problem that is difficult to solve. We do not observe

these kinds of stability issues with any of the other methods.

With the above theoretic and numeric concerns in mind, it is worth considering

how sensitive the tML’s performance is to starting values; we investigate this in

Appendix E. After all, using informative starting values may smooth over some of

these issues and provide a path forward for the tML. Indeed, we find that the tML’s

performance improves if (a) there is a unique equilibrium at the true parameters

and (b) the tML has starting values that are either the true parameters or the PL

estimates. However, even when initialized with the PL estimates, the tML rarely

improves much on, and sometimes worsens, the PL’s performance, and it is almost

always worse than the NPL or CMLE. Overall, relying on informed starting values

and equilibrium uniqueness in the data generating process is perilous for applied

researchers because neither can be verified before estimation. Furthermore, the PL,

NPL, and CMLE perform at least as well as tML, and often much better, across all
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the experiment conditions we consider.

Before turning our attention to economic sanctions, we report the following con-

clusions.

1. The tML routine performs the worst in both multiple and unique settings,

regardless of the number of observations.

2. The NPL and PL methods consistently perform well, but the PL outperforms

the NPL when the number of within-game observations is small, and vice versa

when the number of within-game observations is large. In every experiment,

the NPL is less biased than the PL.

3. The CMLE is almost always the best, but it is the most difficult to implement

as the highly nonlinear nature of the constraint requires advanced software.

5 Application to economic sanctions

Our application is motivated by Whang, McLean and Kuberski (2013, WMK,

hereafter) who also use the empirical crisis-signaling game to study the implementa-

tion of economic sanctions. They test the hypotheses that greater economic depen-

dence decreases the probability that state B resists and increases the amount of belief

updating, finding substantial support for the former but not the latter. The game is

reproduced in Figure 5. The outcomes are status quo, concede to the threat, impose

sanctions, and back down, which are denoted SQ, CD, SF , and BD, respectively.

An observation in WMK is a politically relevant directed dyad-decade. In their

study, a directed dyad is politically relevant if there exists at least one sanction threat

issued from State A to State B in the TIES dataset during the 1971–2000 period.

Within each directed dyad, WMK aggregate the dependent variable to be the most

extreme outcome within a directed dyad-decade, dividing the time frame into three

groups 1971–80, 1981–90, and 1991–2000.
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Like WMK we aggregate covariates xd to the decade level, but unlike WMK,

we dis-aggregate the outcomes ydt to the monthly level (T = 120). We treat the

observed ydt within each directed dyad-decade as if they are repeated draws from the

same equilibrium.23 Effectively this means that each game d consists of a decade-

level covariate vector xd that is thought to produce each directed dyad’s monthly

interaction over the course of the decade. In terms of our setup, each game is a

politically relevant, directed dyad-decade, and we observe T = 120 observations from

each game.24

For our purposes, this approach has two important advantages. First, the CMLE

procedure requires within-game multiple observations for identification. Without this

setup, we could not illustrate this estimator even though it performed quite well in the

Monte Carlo experiments. Second, we do not ignore variation within each decade: a

directed dyad with only one threat issued in a decade may be substantially different

than one with several threats in the same period. Thus, our application does not

replicate previous analyses but rather highlights the differences between tML routines

and those that we propose.

Following WMK, we use the Final Outcome variable to record the dependent vari-

able, which denotes how sanction-threat episodes end.25 When there is no episode

in a month, we record the status quo. When Final Outcome records either “acquies-

cence” by the target or a negotiated settlement, we record the outcome as B giving

23WMK specify payoff shocks following Whang (2010), discussed in Appendix A, where they also
estimate covariance parameters. WMK not only report that these covariance estimates are below
0.07 in magnitude, but also fail to reject the null hypothesis that the covariances are equal to zero
at the p < 0.08 level.

24This is stricter than WMK’s threshold for political relevance, but using their less restrictive in-
clusion criteria does not affect our substantive conclusions on audience costs as we show in Appendix
I.

25Note all the action is coded as occurring in the month when the episode starts. If a play of
the game actually unfolds over a back-and-forth, we might be overstating the number of status quo
observations. To address this, we also consider a robustness check in our supplementary information
where we redo our analysis at the quarterly level, i.e., T = 40.
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Figure 5: Economic sanctions as a signaling interaction.

A

B SQ
(XSA

βSA
, 0)

ACD
(XVA

βVA
, XCB

βCB
)

BD
(Xāβā + εa, 0)

SF(
XW̄A

βW̄A
+ εA, XW̄B

βW̄B
+ εB

)

Threaten sanctions No threat

ResistNot resist

Impose
sanctions

Back down

into A’s threat (node CD). Likewise, whenever the Final Outcome variable notes

that actual sanctions are imposed, we list A as standing firm on its threat (node SF ).

Finally, when Final Outcome denotes that A either “capitulates” or the situation is

unresolved, we list A as backing down (node BD). After dropping irrelevant dyad-

decades, i.e., those with no recorded threats or sanctions, we are left with 418 games,

each with 120 within game observations that span one of the three time frames,

1971–80, 1981–90, and 1991–2000.26

The independent variables, their sources, and how they enter the actors’ payoffs

are listed in Table 2, following the specifications in WMK. All variables are measured

on the dyad-decade level as discussed above.27

26Some countries enter/exit the data in the 1990s so there are 15 dyads where T is between 72
and 96.

27While there are legitimate concerns associated with aggregating any set of variables to the
decade level, we use it in our main analysis to follow WMK. Additionally, we show in Appendix H
that there is actually very little variation in covariates within each dyad-decade. Furthermore, in
Appendix I we also check the analysis with five years T = 60 and one year T = 12. When T = 12
our covariates are measured on the standard dyad-year level. Finally, we also consider a situation
where both xd and yd are measured at the dyad-year level (T = 1). Our coefficients on audience
costs remain stable in sign, significance, and magnitude.
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Table 2: Variables in the economic sanctions model

Variable Utilities Description Source

Fixed to 0 SB, VB Identification restriction –
Constant VA, CB, W̄i, ā Omitted from SA for identification –
Econ. DepA SA, W̄A A’s economic dependence on B COW
DemA SA, ā, W̄A A’s Polity2 score Polity IV
Contiguity SA, CB Contiguity between the states (1-6) COW
AllianceB VA, CB Alliance between the states (0/1) COW
CostsA VA Anticipated costs to A TIES
Econ. DepB CB B’s economic dependence on A COW
CostsB CB Anticipated costs to B TIES
Cap. Ratio W̄i (log) ratio of A’s capabilities to B COW
DemB W̄B B’s Polity2 score Polity IV

5.1 Point estimates

Table 3 displays our main results. Each column contains parameter estimates and

standard errors using the different estimators.28 There are several notable patterns.

First, the techniques derived from the dynamic games literature produce estimates

that agree in direction, magnitude, and significance. Models 2–4 match signs for

14 out of 21 coefficients, and when we reject a null hypothesis using one estimator,

we generally do the same for one of the others. Second, the tML returns estimates

that diverge wildly from the other three. The problem appears particularly bad for

coefficients that enter the target state’s concession payoffs, CB.

Third, not only does the tML routine return different point estimates, it also

produces substantive implications that diverge from the other three estimations. In

Model 1, for example, economic dependence is negative in B’s concession payoff,

CB. This suggests that greater dependence decreases the target state’s preference

28We also attempt to use the corrected-tML approach using a global optimizer and selecting the
equilibrium that maximizes the likelihood of each dyad. After 21 days, convergence was not achieved
and the log-likelihood value was still worse than the PL, NPL, and CML estimators. As a result,
we conclude that the corrected-tML, while theoretically sound, is too computationally intense for
applied research.
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Table 3: Economic sanctions application

tML Pseudo-Likelihood Nested Pseudo Likelihood CMLE
Model 1 Model 2 Model 3 Model 4

SA: Econ. DepA 0.05 −0.32 −0.22 −0.52
(0.29) (0.67) (1.11) (0.55)

SA: DemA −0.00 0.00 0.03 0.01
(0.00) (0.07) (0.07) (0.03)

SA: Contiguity 0.27∗ 0.01 0.05 0.04∗

(0.10) (0.01) (0.04) (0.01)
SA: Alliance −0.06 −0.18∗ −0.17 −0.16∗

(0.08) (0.03) (0.10) (0.07)
VA: Const. −0.06 −0.33 1.60 1.31∗

(0.08) (0.83) (1.65) (0.12)
VA: CostsA −0.04 0.36 −0.05 −0.19

(0.03) (0.24) (0.27) (0.17)
CB: Const. 0.81 −1.12∗ −2.14∗ −4.53∗

(0.91) (0.31) (0.80) (2.24)
CB: Econ. DepB −0.21 2.32∗ 2.34∗ 2.83∗

(0.16) (0.68) (1.11) (0.63)
CB: CostsB −0.08∗ 0.08 0.12 0.19∗

(0.03) (0.06) (0.06) (0.05)
CB: Contiguity −0.25∗ 0.13∗ 0.12∗ 0.10∗

(0.02) (0.04) (0.04) (0.03)
CB: Alliance 0.10 −0.05 −0.03 −0.02

(0.09) (0.13) (0.12) (0.11)
W̄A: Const. −0.15 −2.43∗ −2.42∗ −2.46∗

(0.78) (0.10) (0.13) (0.08)
W̄A: Econ. DepA 0.07 0.39 0.01 −0.05

(0.75) (0.90) (1.14) (0.18)
W̄A: DemA 0.01 0.01 0.04 −0.00

(0.01) (0.08) (0.07) (0.03)
W̄A: Cap. Ratio −0.01 0.02 0.03 0.04∗

(0.01) (0.01) (0.03) (0.01)
W̄B: Const. −0.38 0.48∗ −0.91 −4.42

(1.13) (0.22) (1.11) (2.92)
W̄B: DemB 0.01∗ −0.00 −0.00 −0.01∗

(0.00) (0.01) (0.01) (0.01)
W̄B: Cap. Ratio 0.01 0.11∗ 0.12∗ 0.29∗

(0.01) (0.04) (0.05) (0.09)
ā: Const. −0.56 −2.63∗ −2.64∗ −2.71∗

(0.77) (0.09) (0.13) (0.10)
ā: DemA −0.00 −0.00 0.02 −0.00

(0.01) (0.07) (0.07) (0.03)

Log L −4102.76 −3964.03 −3932.45 −3927.91
D × T 418× 120 418× 120 418× 120 418× 120

Notes: ∗p < 0.05

Asymptotic standard errors in parenthesis, see Appendix D.1 for details.
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for peaceful resolutions over escalation. Yet, the remaining estimators suggest the

opposite. Here, more dependence implies B should be more likely to prefer peace to

escalation, a finding which closely matches previous work (Hafner-Burton and Mont-

gomery 2008; Lektzian and Souva 2003; McLean and Whang 2010).29 In a similar

vein, Schultz and Lewis (2005, p. 123–4) discuss “sensible” payoff restrictions that

imply bargaining concessions are valuable. They expect state A to prefer immediate

concessions from B to the status quo, i.e., VA > SA. Similarly, state B should prefer

A backing down to immediately conceding, i.e., VB > CB. We determine whether

these inequalities hold given the parameter estimates in Table 3. Using Models 3–4,

all observations satisfy these restrictions. In Model 2, only 20% satisfy the restriction,

and no observation satisfies these restrictions with the estimates from Model 1.

For another example, consider audience costs, i.e., the initiating state’s payoff

from backing down, ā. Notice that the relevant constant term is negative, significant,

and large in magnitude in all three models that accommodate multiple equilibria.

This suggests that states or leaders are indeed punished for backing down after is-

suing threats.30 In fact, in Models 2–4, we reject the null hypothesis that ā ≥ 0

at the p < 0.05 level in every observation. In contrast, we cannot reject the null

hypothesis that ā ≥ 0 at the p < 0.1 level in the tML model for any observation. Our

analysis suggests that researchers may underestimate audience or belligerence costs

if estimation techniques do not accommodate the multiplicity of equilibria.

Overall, our results demonstrate that tML routines can produce point estimates

and substantive implications that diverge from our proposed methods. To better

29Although our analysis is not a replication exercise, we confirm WMK’s central finding that
greater economic dependence for State B increases its preferences for the concession outcome, CdB ,
and decreases is probability of resisting, p∗dR.

30Note that the estimate captures both belligerence and audience costs (as in Kertzer and Brutger
2016). We dig deeper into this in the subsequent section by conducting counterfactuals that isolate
the substantive effects of audience costs while fixing belligerence costs.
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illustrate that the differences are due to equilibrium selection and the computational

problems addressed above, we conduct two additional analyses in Appendix F. First,

we fit the sanctions model using a tML routine that is identical to what we use

in Model 1 except for how it computes equilibria. Most surprisingly, the two tML

results diverge in both sign (for 9/20 estimates) and significance (for 13/20 estimates).

Second, we show the importance of starting values. Perhaps unsurprisingly, when

we use the PL estimates as starting values, the tML improves, but is still worse

than the NPL and CMLE in terms of log-likelihood. Thus, two researchers can

reach substantively diverging conclusions with different software choices even when

analyzing identical data sets.

5.2 Audience costs and substantive effects

How do audience costs affect the likelihood of leaders threatening sanctions? In

the previous section, we demonstrated that tML routines can produce point estimates

that diverge wildly from our solutions. In this section, we analyze the substantive

effects of audience costs on the equilibrium probability of threatening sanctions, pC ,

illustrating that the tML routines can fail to uncover important comparative statics.

We focus on audience costs because of their importance to the economic sanctions

literature (Dorussen and Mo 2001; Drezner 1998, 2003; Martin 1993; Whang, McLean

and Kuberski 2013). In addition, previous work has not connected audiences to the

likelihood that leaders threaten sanctions.

Regarding audience costs and the incentives to initiate threats, there exist a priori

expectations from the conflict literature.31 On the one hand, larger audience costs

may discourage a leader from initiating disputes if the leader never expects subse-

31While the decisions around conflict and sanction initiation are obviously different, the conflict
literature provides a good jumping-off point for theorizing about the effects of audience costs on
threatening sanctions.
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quent concessions; Weeks (2012) and Prins (2003) find such a relationship using data

from militarized interstate disputes. On the other hand, larger audience costs create

bargaining advantages within disputes (Dorussen and Mo 2001; Schultz 1999), and

Martin (1993) shows that leaders with larger costs expect additional cooperation from

the international system when imposing sanctions. As such larger costs may encour-

age leaders to initiate disputes, and Crisman-Cox and Gibilisco (2018) find that this

effect dominates in interstate crises between 1993–2007. Finally, even though survey

experiments demonstrate that audience costs are highly salient for economic crises

(Thomson 2016), they may be unrelated to the likelihood of sanction threats given

our estimates in the previous section.

To see which, if either, effect appears here, we consider the directed dyad in which

the U.S. is the initiating state A and China is the target state B between 1991–2000,

the most recent decade in the sample. We vary the U.S.’s audience cost, ā, from −6

to 0 while fixing the remaining payoffs estimated using the tML and CMLE from

Table 3. For every value of ā, we compute all equilibria using a line-search method.

Then we plot the associated equilibrium probabilities of the U.S. initiating a conflict,

pC , in Figure 6. For all values of ā considered, there is a unique equilibrium, pictured

with the blue circles. The vertical line denotes the estimated value of U.S. audience

costs, around −2.7 for the CMLE and −0.6 for the tML. Throughout, we fix the

other payoffs at their estimated values, thereby implicitly controlling for the other

(belligerent) costs leaders face when choosing to start a crisis. Hence, our analysis

allows us to isolate the effects of audience costs from belligerence costs, a traditionally

difficult objective when using experiments or reduced form analyses (Kertzer and

Brutger 2016).

The figure illustrates three notable results. First, there is substantial difference

between the substantive effects from the CMLE and tML. That is, even with the same
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Figure 6: Substantive effects of audience costs in U.S. and China dyad, 1991–2000.
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theoretical model and data, the choice of estimation procedure matters. Second, given

the CMLE, audience costs have a large substantive effect on the probability of threat

initiation, covering the entire range between zero and one. These large effects are

lost when using the tML estimates. Third, there is a U -shaped relationship between

audience costs and threat initiation. Leaders only initiate threats when audience costs

are very small or quite large. In the former case, leaders do not pay a cost for backing

down and do so with impunity. In the latter case, their threats are quite credible,

coercing rivals to concede with higher probability.32 With intermediate audience

costs, however, leaders almost never threaten rivals with sanctions, as their threats

are not credible and backing down entails nontrivial costs.

Notice that if we were to increase the U.S.’s audience costs beginning from the

value estimated in the data, then the model predicts an increase in sanction threats

toward China. That is, the true value of audience costs tend to fall on the left-hand-

side of the U -shaped curve, where larger (more negative) audience costs increase the

likelihood of interstate threats. This pattern generalizes to other observations in the

32Appendix G illustrates these additional comparative statics.
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data. We compute the marginal effect of making audience costs, ā, more negative on

the equilibrium probability of issuing threats. Conclusively, larger (more negative)

audience costs increase the likelihood of states threatening their rivals with sanctions.

This result holds in 97% of observations.

6 Conclusion

In this paper, we analyze problems that emerge when fitting games with multiple

equilibria to data in international relations. We demonstrate that frequently used

maximum likelihood routines perform poorly when estimating the parameters of the

canonical crisis-signaling game not only if there are multiple equilibria in the signaling

game generating the data but also if the equilibrium is unique. In the former case,

without further information, the likelihood function may select the wrong equilibrium

when evaluating different parameter guesses, leading to estimates that do not increase

in accuracy with more observations. In the latter case, the likelihood function will

often be evaluated at parameter guesses under which multiple equilibria exist, leading

to similar problems. Imposing a selection rule does not fix these problems, rather,

it makes the estimation problem more difficult because it introduces discontinuities

into the likelihood. Our analysis should give researchers pause before using these

techniques in international relations.

For solutions, we adapt several estimators from the dynamic games literature and

show that they are particularly useful in the crisis bargaining context. In a series

of experiments and applications, we show that all three perform better than the

currently used tML routines, but the CMLE and NPL are consistently good choices.

Although the CMLE is far and away the best choice, it requires repeated within-game

observations, which may not be appropriate in all situations. Additionally, it requires
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specialized constrained optimization software. In general, we propose the following

advice when estimating crisis-signaling games.

1. Estimate the game with the PL method, using a flexible first-stage estimator.

In our experience, random forests work well.

2. To verify whether bias in the first-stage estimates has affected the second stage,

estimate the game with either the NPL or CMLE approach. If these converge,

then they should be prioritized. If these do not converge, then the PL results

should be prioritized.

3. The tML routine should not be used; it generally performs worse than the other

procedures.

We provide R implementations of the PL and NPL estimators in our computational

appendix and in the sigInt package. This accessibility should help researchers to

uncover theoretically informed parameters rather than engaging in more reduced-form

analyses.

Finally, the paper raises an important avenue for future research into the empir-

ical crisis-signaling model. Throughout, we have assumed that within each dyad or

game, states play the same equilibrium for all within unit observations t ∈ {1, . . . , T}.

However, it could be the case that the dyad switches equilibria over time; that is, ydt

and ydt′ were generated from two different equilibria for some t 6= t′. If this equilib-

rium selection rule probabilistically depends on equilibrium properties such as Pareto

efficiency or the amount of updating, then scholars could attempt to model the equi-

librium selection as in Bajari, Hong and Ryan (2010). If this equilibrium selection

rule is arbitrary, then scholars could employ techniques that estimate identification

bounds around the coefficients of interest as in Ciliberto and Tamer (2009). Either
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approach would relax an assumption in our analysis. A major difficulty in this area

is that current work considers games of complete information, as these techniques

require repeatedly enumerating the entire set of equilibria. With incomplete infor-

mation and signaling incentives, this task becomes substantially more complicated.
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