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Abstract

Separation or “perfect prediction” is a common problem in discrete choice mod-
els that, in practice, leads to inflated point estimates and standard errors. Standard
statistical packages do not provide clear advice on how to correct these problems. Fur-
thermore, separation can go completely undiagnosed in fitting advanced models that
optimize a user-supplied log-likelihood rather than relying on pre-programmed esti-
mation procedures. In this paper, we both describe the problems that separation can
cause and address the issue of detecting it in empirical models of strategic interaction.
We then consider several solutions based on penalized maximum likelihood estimation.
Using Monte Carlo experiments and a replication study we demonstrate that when
separation is detected in the data, the penalized methods we consider are superior to
ordinary maximum likelihood estimators.
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1 Introduction

Separation is a common problem in modeling categorical dependent variables wherein

a linear combination of one or more explanatory variables perfectly predicts values of the

outcome variable. It presents theoretical and practical problems. Theoretically, under data

generating processes (DGPs) and sample sizes where separation is plausible, the statistical

properties of an estimator are poorly defined (e.g., unidentified point estimates with infinite

expected values). Practically, in datasets where separation appears, the magnitudes of nu-

merically calculated point estimates and standard errors tend to inflate, sometimes heavily,

toward positive or negative infinity. In binary-outcome models, solutions to the separation

problem have been proposed and examined by Beiser-McGrath (2020), Gelman et al. (2008),

Zorn (2005), and others. This line of inquiry has been invaluable for applied researchers.

However, a binary outcome is only one type of categorical choice model used by political

scientists; separation problems also plague more advanced or complicated models.1

Specifically, no one has approached the separation problem within the context of discrete-

choice strategic models (e.g., Signorino 1999). By considering this issue, we make three

specific contributions. First, we derive bias-reduced (BR) strategic estimators based on

penalized likelihood (PL) estimation and demonstrate these estimators using Monte Carlo

simulations and a replication of Signorino and Tarar (2006). Second, we introduce political

scientists to a tool for diagnosing separation from Konis (2007) and demonstrate how it

applies to strategic models. Third, we provide software for researchers to easily fit the BR

strategic estimators.

Throughout, we focus on separation problems in a two-player, extensive-form deterrence

game, which is a standard workhorse model for political scientists interested in the empirical

implications of theoretical models (EITM). This model and extensions to it are used to study

key questions across political science. In many cases, scholars derive an empirical model from

1For example, Cook et al. (2018) discuss separation problems in multinomial logit models.
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a formal theory and then supply a self-coded, log-likelihood function to a numeric optimizer

to find maximum likelihood estimates (MLE). This approach is extremely useful for fitting

advanced models to data. However, separation becomes more difficult to diagnose in these

settings, as optimization software will issue successful convergence codes without raising any

warnings about the numerical instability caused by separation. Additionally, because these

models often endogenize one or more choices, separation-induced inflation in one estimate

can corrupt other estimates.

Before proceeding, it is worth pointing out that while BR estimators are the primary

tool for addressing separation, they were initially proposed to combat small sample bias in

binary choice models (Firth 1993; Rainey and McCaskey 2021).2 As such, we expect that

these approaches may also reduce bias in the coefficient estimates even when separation is

not necessarily a concern. Indeed, the entire enterprise of fitting strategic models may be

improved by considering the wider application of BR estimators, especially given that these

models sometimes involve large numbers of interrelated parameters with moderately sized

samples. However, bias reduction is not costless; as Rahman and Sultana (2017) point out,

bias reduction in point estimates does not always translate into bias reduction in predicted

probabilities and in some cases PL estimation can increase this bias. Future work should

analyze the trade-off between bias reduction in the estimates and possible bias increases in

the choice probabilities in finite samples without separation. However, given the relatively

complicated nature of strategic modeling, it seems likely that BR estimators have more to

offer this family of models than just a solution to separation problems.

2 Separation problems

Separation occurs in discrete choice models when a linear combination of one or more

independent variables perfectly predicts a category of the outcome variable (Albert and

Anderson 1984). There are two main reasons why separation occurs: (1) at least one of the

2This origin is why these penalized estimators are called BR estimators.
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parameters is infinite; or (2) the true parameters are finite, but perfect prediction occurs

as an artifact of a particular DGP and realized sample. We focus only on the latter case.

Here, separation can be thought of as a finite-sample problem: if enough additional data is

collected, the problem disappears.

In cases like these, where the true parameters are finite, separation creates theoretical

and practical problems. To understand these problems, consider a sample where a single

predictor perfectly predicts a category of the outcome variable. In such a situation, the

sample log-likelihood function is monotonic in the estimate of that predictor’s parameter

(i.e., better fit can always be found by moving the estimate further from zero). As Albert

and Anderson (1984) show, because of the monotonicity, there is no unique MLE that solves

the first order conditions. Instead, the log-likelihood converges to an asymptote as the

estimate goes to ±∞, depending on the true parameter’s sign.

Regarding the estimator’s theoretical finite-sample properties, recall that bias is defined

based on the expected value of the MLE (i.e., the average MLE over possible samples),

and consider a DGP where separation is plausible in any given realized sample. In these

situations, the expected value of the MLE includes samples where the estimate is ±∞.

Therefore, the estimator’s moments are undefined.

Concerning practical problems in estimation, separation leads to numerically computed

estimates and standard errors that are much larger than the truth.3 Because of the monotone

log-likelihood, the numerically obtained MLE will tend to be (i) much larger in magnitude

than the true parameter and (ii) a function of the optimization software’s numeric tolerance

(Zorn 2005). To put this another way, while the true MLE is infinite, numerical optimizers

will return a finite estimate that is typically much larger than the true parameter. Addi-

tionally, because a unique MLE does not exist, tests based on asymptotic results are likely

3Defining “true” standard errors is difficult given the infinite expectations. We use the curvature of

the likelihood at the true parameters to reflect this quantity despite the violation of standard regularity

conditions.
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misleading as a unique MLE is a standard regularity condition for these results.

These inflated estimates may not be of major concern if the standard errors also inflate

enough to prevent type-1 errors; however, there is no guarantee that this will be the case. In

our replication study below, where separation is detected, some null hypotheses are rejected

only when the separation problem is ignored but not once it is corrected. While it is im-

possible to say which decision is correct, the presence of separation suggests that the former

is more suspect than the latter. Additionally, inflated standard errors raise the prospect of

type-2 errors and under-powered studies. In our simulations, we find that separation can

severely affect power, and in Appendix B.5 we show an example where both type-1 and

type-2 errors can increase when separation is present but goes uncorrected.

Two further complications emerge in moving from the binary to multinomial outcomes.

First, because there are more categories in the outcome, samples need to be larger in order

for the threat of separation by chance to disappear. For example, with one binary regressor

and a binary outcome we just need enough observations for every box in the cross tabulation

to be filled. As the number of outcomes increases, this task requires more observations.

Second, common implementations of multinomial models (e.g., Stata or R) provide neither

warnings of possible separation nor make any attempt to identify problematic regressors.

Moving to the strategic setting introduces two more complications. First, standard visual

diagnostics are less informative. Specifically, common rules-of-thumb ask analysts to look

for estimates that are implausibly large, while this can be an important red flag, it is often

difficult to know exactly how big is too big. This determination is clouded in the strategic

context where the scale parameter is not always fixed to 1 like it is in ordinary logits and

probits. In fact, the scale parameters sometimes contain another player’s estimated choice

probabilities (e.g., Signorino and Tarar 2006) or are estimated as free parameters (e.g.,

Whang et al. 2013), making the context of “too big” difficult to pin down. Second, strategic

models contain interdependent and endogenous parameters by construction. When separa-

tion leads to inflated estimates in one player’s utility function, this inflation can spill over into
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estimates of that player’s conditional choice probability, which then affects the estimation

of other players’ utility functions. Analyzing strategic interdependence is a main motivator

of structural modeling, but care must be taken to minimize biases that may cascade up a

game tree.

2.1 Separation corrections

With logits and probits, the primary existing solutions to the separation problem involve

PL estimation (Zorn 2005). Penalization requires the analyst to impart some extra-empirical

information (i.e., information from outside the data) to induce numerical stability in the op-

timization routine. We want to choose information that encapsulates our belief that the

coefficient estimates should not be too large. From a Bayesian perspective, penalization is

a type of prior belief where the true parameters are unlikely to be huge for any particular

variable. As Gelman et al. (2008) put it, the key idea is that large changes on the logit/probit

scale (typically 5 or more) are very rare and the penalty/prior should reflect this understand-

ing (2008, 1361). In most cases, this information takes the form of a Jeffreys prior penalty

term that is maximized when the parameters are all zero, although others propose penalty

terms based on the Cauchy with median 0 and scale 2.5 (Gelman et al. 2008) or log-F (1, 1)

(Greenland and Mansournia 2015).4 All of these penalties pull the estimates away from ±∞

and towards 0.

Before deriving the BR strategic estimators, we first describe the model. Consider the

extensive-form deterrence game in Figure 1. There are two actors, A and B, each of whom

has two actions yi ∈ {0, 1} for i ∈ {A,B}. At the start of the game, each player receives

private information in the form of an action-specific shock εi(yi). Each shock reflects private

information that i has regarding her payoff for taking action yi.

After receiving her information, A acts. If A chooses yA = 0, the game ends at the

4As Greenland and Mansournia (2015) note, the degrees of freedom in the log-F can be increased to

log-F (m,m) where larger m lead to more severe shrinkage. We find that m = 1 works well and stick to that

throughout, but analysts may consider adjusting this to their own needs.
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A

B

SQ
UA(SQ) + εA(0)

BD
UA(BD) + εA(1)
UB(BD) + εB(0)

SF
UA(SF ) + εA(1)
UB(SF ) + εB(1)

0 1

0 1

Figure 1: Standard two-player deterrence game

status quo (SQ). However, if A challenges B by taking action yA = 1, then B responds

by either backing down to A’s challenge by taking action yB = 0 (ending the game at BD)

or standing firm against A by taking action yB = 1 (ending the game at SF ). When the

game ends at outcome o ∈ {SQ,BD, SF}, players receive a payoff equal to Ui(o) + εi(yi).

This payoff contains a deterministic component: Ui(o) representing a commonly known and

observable payoff to each player and a stochastic component: εi(yi), which is the privately

known cost/benefit to player i for taking action yi.

The solution concept for this game is quantal response equilibrium (QRE). At the QRE,

B chooses 1 if UB(SF ) + εB(1) > UB(BD) + εB(0), which can be described as

yB = I [UB(SF )− UB(BD) + εB(1)− εB(0) > 0] ,

where I[·] is the indicator function. Likewise, A chooses 1 if

yA = I [(1− Pr(yB = 1))UA(BD) + Pr(yB = 1)UA(SF )− UA(SQ) + εA(1)− εA(0) > 0] .

To transform this game into an empirical model we need to (i) specify the deterministic

portion of the utilities in terms of observed data and (ii) assume a distribution for the
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action-specific shocks. For exposition, consider the following specification:

UB(SF ) = XBβ

UB(BD) = 0

UA(SQ) = XSQ αSQ

UA(BD) = XBD αBD

UA(SF ) = XSF αSF

Pr(yB = 1) = pB = FB (UB(SF ))

Pr(yA = 1) = pA = FA
(
(1− pB)UA(BD) + pBUA(SF )− UA(SQ)

)
,

where Fi is the distribution that describes εi(1)−εi(0). Our goal is to estimate the parameters

θ = (α, β) using D observations of actors playing this game. Standard practices estimate θ

in one of two ways: a full information maximum likelihood (FIML) estimator or a two-step

from Bas et al. (2008) called statistical backwards induction (SBI).

2.1.1 Statistical Backwards Induction

The SBI procedure is as follows:

1. Using only observations where yA = 1, regress yB on XB using a logit or probit (de-

pending on FB) to produce β̂SBI . Estimate p̂SBIB = FB(XBβ̂
SBI).

2. Regress yA on ZSBI =

[
−XSQ XBD(1− p̂SBIB ) XSF (p̂SBIB )

]
using a logit or probit

(depending on FA) to produce α̂SBI .

Note that because each step is a binary choice model, the MLE for θ̂ solves

β̂SBI = argmax
β

∑
d:yA,d=1

{
I(yB,d = 1) log

[
FB(x′B,dβ)

]
+ I(yB,d = 0) log

[
1− FB(x′B,dβ)

]}
(1)

α̂SBI = argmax
α

D∑
d=1

{I(yA,d = 1) log [FA(z′dα)] + I(yA,d = 0) log [1− FA(z′dα)]} ,

where d = 1, . . . , D indexes each observed play of this game.
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Because this approach relies on two distinct binary outcome models, standard PL-based

solutions apply. Let LB(β | y) and LA(α | y) be the objective functions in Eq. 1, then the

bias-reduced SBI (BR-SBI) estimates are

β̂BR−SBI = argmax
β

LB(β | y) + g(β) (2)

α̂BR−SBI = argmax
α

LA(α | y) + g(α),

where g is the logged penalty function. If the penalty is a density function (e.g., Cauchy or

log-F ) then g is the logged density function, while if g is the Jeffreys prior penalty then

g(·) =
1

2
log(det(I(·))),

where I is the estimated Fisher-information matrix calculated using the Hessians of the

uncorrected log-likelihoods. Firth (1993, 36) suggests that standard errors for β̂BR−SBI can

be estimated using I(β̂BR−SBI)−1. This means that standard errors for α̂BR−SBI can be

estimated using common two-step maximum likelihood results.

2.1.2 Full Information ML

The SBI estimator is easily implemented, but this ease comes at the cost of statistical

efficiency. The FIML maximizes a single log-likelihood function that re-computes the choice

probabilities at every step in the optimization process. Because the theoretical model has a

unique equilibrium, the FIML is consistent and asymptotically efficient.

Using the above parameterization, the FIML estimates maximize the log-likelihood:

L(θ | y) =
D∑
d=1

{I(yA,d = 0) log(1− pA,d)

+ I(yA,d = 1)I(yB,d = 0) log(pA,d · (1− pB,d)) (3)

+I(yA,d = 1)I(yB,d = 1) log(pA,d · pB,d)} ,
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and the bias-reduced FIML estimates are given as

θ̂BR−FIML = argmax
θ

L(θ | y) + g(θ). (4)

If g is the logged Jeffreys prior, then the Hessian of Eq. 3 needs to be computed at each

step in the numeric optimization process: a non-trivial task. Alternatively, Cauchy or log-F

penalties can also be used. We provide an extension to R’s games package called games2

that allows analysts to fit the BR-FIML with Jeffreys prior, Cauchy(0, 2.5) or log-F (1, 1)

penalties.

In choosing among these three penalties, we point out some pros and cons. The main

advantages of the Jeffreys prior are that it is widely used and implemented for binary outcome

models; as such, the BR-SBI with Jeffreys prior can be easily fit using existing software. For

the FIML, however, the Jeffreys prior requires that the Hessian be negative definite at every

guess of the parameter values. This requirement always holds with logits and probits but can

fail in more complicated likelihoods. When the logged Jeffreys prior does not exist, density-

based penalties based on the Cauchy or log-F distributions provide easy-to-use alternatives.

Additionally, the density-based penalties perform best in simulations. In particular, the log-

F penalty performs very well, although all three offer vast improvements over the uncorrected

methods. Further, Beiser-McGrath (2020) finds that the Firth correction can be problematic

in the kind of large-N , rare-events data that dominate international relations. Specifically, he

finds that the Jeffreys prior penalty can produce estimates that are in different directions from

the original results, implying that this penalty may do more than just shrink the estimates.

Separation-induced inflation is always away from zero, so sign changes are concerning. Given

this finding, the density-based penalties may be preferred, but we recommend that analysts

consider multiple penalties where possible to ensure that the corrections are not dependent

on the specific penalty.

2.2 Detecting Separation

Having considered the nature of and solutions to the separation problem, we are left
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with the task of diagnosing it within specific samples. Current advice in political science

is to look for point estimates and standard errors that are so large as to strain credibility.

However, the different and sometimes endogenous scale parameters used in strategic models

makes defining “too big” potentially ambiguous. As an alternative, we introduce an easy-to-

use linear programming (lp) diagnostic from Konis (2007) to political scientists. We defer

technical and implementation details to Appendix A and instead describe its application to

strategic models.5

The lp-diagnostic is designed for binary outcome data and can be applied to the SBI

without change. Directly generalizing this diagnostic to the full information strategic setting

is infeasible, because the full design matrix contains the endogenous quantity pB. As a

result of this endogenous quantity, we cannot know a priori if separation exists between the

covariates describing A’s decision-making and the three outcomes of the strategic model.

However, the lp-diagnostic can be applied both before and after estimation. We recommend

the following work flow:

1. Using the observations where yA = 1, check for separation in XB and yB .

2. Generate p̂SBIB and ZSBI . Check for separation in Z and yA.

3. Post-estimation, use the lp-diagnostic to search for separation in [ZSBI , XB] or [ZFIML, XB]

against each of the three outcomes (SQ,BD, SF ), individually.

If separation is detected at any point, a BR estimator should be considered.

3 Performance

We now consider Monte Carlo experiments to compare the BR-SBI and BR-FIML es-

timators given by Eq. 2 and Eq. 4, respectively, to their unpenalized counterparts. The

experimental setup is presented in Figure 2, where we consider four parameters. The β

parameters and the variable XB characterize B’s payoffs, while the α parameters and XA

5The diagnostic is implemented in the R function detectseparation::detect separation.
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form A’s payoffs. Regressors XA and XB are i.i.d. Bernoulli(0.5), while values of α and β

are chosen to induce separation. In the interest of space, we present the simplest experiment

here, while additional and more realistic simulations are deferred to the online appendix.

Our main simulation considers a sparse model where separation is likely to emerge in the

data recording B’s choice of 0 or 1. Let B’s choice be given by

yB = I [−1 + 4XB + εB(1) > 0 + εB(0)]

= I [−1 + 4XB + εB(1)− εB(0) > 0] .

Each error term is i.i.d. standard normal, such that pB = Φ
(
−1+4XB√

2

)
. Note that a large,

but not unreasonable, coefficient on XB will ensure that in most samples yB = 0 only when

XB = 0.

The DGP for player A is

yA = I [−2.5(XApB) + εA(1) > 1.5 + εA(0)]

= I [−1.5− 2.5(XApB) + εA(1)− εA(0) > 0] .

In terms of Figure 2, the parameters of interest are α0 = 1.5, α1 = −2.5, β0 = −1 and β1 = 4.

We repeat the Monte Carlo experiment 5,000 times with samples of size D = 500 and keep

the results where the lp-diagnostic detects separation between XB and ending the game at

outcome BD. In cases where the lp-diagnostic does not detect separation, the results are

nearly identical across estimators. As with many applications of strategic probits, the status

quo is the most common outcome (about 90% of observations), while BD and SF each

emerge about 5% of the time. This means that the first step of the SBI typically has about

50 observations to use.

Before considering the simulation results, one additional point is worth mentioning. Re-

call that the expected value for β̂1 is undefined for the uncorrected estimators. As such,

the observed estimates are whatever values get “close enough,” such that the optimization

software issues a successful convergence code. In other words, the numeric estimates pro-
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A

B

SQ
α0 + εA(0)

BD
0 + εA(1)
0 + εB(0)

SF
XAα1 + εA(1)

β0 +XBβ1 + εB(1)

0 1

0 1

Figure 2: Monte Carlo version of the two-player deterrence game

duced by the ordinary SBI and FIML estimators reflect a type of regularization: They will

be closer to the zero (and the truth) than the true MLE of ±∞, but in ways that are highly

dependent on algorithm and tolerance choices.

3.1 Parameter Estimates

The Monte Carlo results are reported in Table 1. The first thing to note is that the BR

techniques makes a noticeable and positive impact on both the point estimates and their

precision. This translates into substantial decreases in the multivariate root-mean-squared

error (RMSE). For both the SBI and the FIML, the PL approach helps when separation

is present. The BR-FIML (log-F ) has the smallest RMSE of all the estimators considered,

while also having the least bias in estimating β1.

Second, we see that the FIML estimators tend to outperform their SBI counterparts.

One reason for this is that the FIML is a system estimator and will be more efficient by

construction. However, it is also worth noting that the separation-induced inflation is worst

in the unpenalized SBI and that while the FIML still exhibits bias, its RMSE is about

3/4 that of the SBI. These differences emerge in part because the SBI is less efficient by

construction, but they are mostly due to differences in their default fitting algorithms.6

6See Appendix B.2 more discussion on these algorithmic differences.
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Table 1: Monte Carlo results when separation is present in Player B’s decision

Estimator Quantity α0 α1 β0 β1 RMSE
Ordinary SBI Est 1.50 −3.05 −1.04 9.28 5.73

St.Dev. 0.13 1.99 0.49 0.60
St.Err. 0.13 28.84 22.30 1140.57
Power 1.00 0.98 0.78 0.00

Coverage 0.95 0.91 0.96 1.00
BR-SBI (Firth) Est 1.51 −2.59 −1.00 3.90 1.37

St.Dev. 0.13 1.23 0.39 0.41
St.Err. 0.13 0.75 0.39 1.05
Power 1.00 1.00 0.77 1.00

Coverage 0.95 0.89 0.96 1.00
Ordinary FIML Est 1.50 −3.19 −1.08 7.04 4.33

St.Dev. 0.13 2.80 0.39 0.99
St.Err. 0.13 1.53 0.37 9902.47
Power 1.00 0.85 0.89 0.00

Coverage 0.95 0.96 0.96 1.00
BR-FIML (Firth) Est 1.50 −2.46 −0.96 3.90 0.99

St.Dev. 0.13 0.86 0.32 0.33
St.Err. 0.13 0.79 0.33 1.08
Power 1.00 0.99 0.86 1.00

Coverage 0.95 0.94 0.96 1.00
BR-FIML (Cauchy) Est 1.52 −2.49 −0.97 4.27 0.93

St.Dev. 0.13 0.72 0.33 0.37
St.Err. 0.13 0.83 0.34 1.35
Power 1.00 0.99 0.85 1.00

Coverage 0.96 0.94 0.96 1.00
BR-FIML (log-F ) Est 1.51 −2.43 −0.92 4.03 0.76

St.Dev. 0.13 0.60 0.32 0.32
St.Err. 0.13 0.77 0.33 1.19
Power 1.00 1.00 0.83 1.00

Coverage 0.96 0.94 0.96 1.00
Truth Parameters 1.50 −2.50 −1.00 4.00

St. Err. (SBI) 0.13 0.71 0.38 1.11
St. Err. (FIML) 0.13 0.77 0.33 1.17

Note: St. Dev. refers to the standard deviation of estimates produced by the simulation. St.
Err. refers to the standard errors produced by each estimator averaged over simulations. True
standard errors are estimated using Hessian curvature at the true parameter values and the data
within each simulation and then averaging over simulations. Power refers to the proportion of
simulations where the null hypothesis is correctly rejected, and coverage refers to the proportion
of simulations where the 95% confidence interval contain the true value.
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3.2 Uncertainty

The next thing we want to consider is the uncertainty around these estimates. There

are three quantities we consider here. First, we calculate the standard deviation of the

estimates over the Monte Carlo iterations. These values are simulation estimates of the

standard deviation of the sampling distribution for each parameter, making it an estimate of

the “true” standard error (St. Dev. rows in Table 1). Second, we compute the true standard

errors within each simulation by evaluating the relevant derivatives at the true parameter

values and simulated data. Averaging over simulations gives us another estimate of the true

standard errors (Truth rows in Table 1). Third, we will compare these values to the average

computed standard errors at the estimates (St. Err. rows in Table 1). Absent separation,

these three values should be nearly identical; with the numerical issues induced by separation

they will diverge.

The ordinary SBI estimator does poorly here, only estimating the uncertainty around

α̂0 correctly. This status quo payoff is the only parameter not directly affected by pB.

The BR-SBI estimator does notably better, more closely approximating the standard errors

obtained by evaluating the relevant derivatives at the true parameters. Interestingly, while

the average standard error on α1 is very close to what we expect the true standard error

to be, this value is overconfident given the simulation results. Further analysis shows that

BR-probit estimates of α1 have a long tail in the direction of the separation which is why

the simulation standard deviation is notably larger.7

Once again, the ordinary FIML tends to perform a bit better than the ordinary SBI.

7In the online appendix, we further consider the effect of pB by asking: How much of the bias and

variance in the SBI estimates of α can be attributed to estimating pB? To answer this question, we rerun

the main simulation where we fit only the second stage of each SBI, but with p̂B fixed to its true value.

Any differences these values and the SBI result in Table 1 can thus be attributed to estimating pB in the

presence of separation. We find that nearly all the problems in estimating α1 go away when the estimate of

pB improves, which suggests that the SBI problems in estimating α1 are second-order problems driven by

the bias in β̂1 and p̂B .
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Here, the three standard errors quantities closely match for both constant terms. As with the

ordinary SBI, we see huge standard errors for β̂1 despite there being little actual variation

across simulations. We also see some overconfidence in the average standard error of α̂1

relative to the simulation standard deviation.

Overall, the BR-FIML standard errors closely match the true standard errors produced

by evaluating the Hessian at the truth, providing some confidence in the procedure. How-

ever, like the BR-SBI, we observe that the standard error on β̂1 is notably larger than the

simulated sampling distribution. As previously mentioned, we follow standard practices by

using the Hessians from the uncorrected likelihoods when computing standard errors for all

the BR procedures. Ignoring the extra-empirical information from the penalty produces, on

average, conservative standard errors. Analysts who want this information included in their

uncertainty measures may be better off adopting a Bayesian approach, as standard errors

based on the BR-Hessian can be difficult to derive.

3.3 Coverage and Power

Another relevant measure here is coverage. Here, we report the proportion of 95% confi-

dence intervals, calculated within each iteration using the estimated standard errors, contain

the true parameter value. Ideally, this value will be 0.95. Larger values reflect conservative

standard errors (over-wide intervals), while smaller values tend to reflect over-confidence

with narrower intervals around a poor point estimate. In many cases, we see that coverage

for everything but β̂1 is about 0.95. The most notable exceptions are α1 for the SBI and

BR-SBI where the coverage is too small. For the latter, this poor coverage again reflects

a skewed simulated sampling distribution with a tail that pulls in the direction of −∞.

Interestingly, for β̂1 all six estimators have 100% coverage across the simulations.8 In the

uncorrected case, this is not surprising as the standard errors are orders of magnitude larger

than the estimates and covering the true value is easy but not particularly meaningful. In

the corrected case, high coverage reflects the conservative standard errors mentioned above.

8Analysts should take care to note that 100% coverage and/or power are definitely not general results.
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At this point, it is worth reconsidering the practical consequences and whether the nu-

merical and statistical issues with separation are worth worrying about. After all, if both

the point estimates and standard errors inflate the way they do in Table 1, then a likely out-

come is that researchers will fail to reject the null hypothesis for the numerically problematic

parameters and the harm done is perhaps minimized. However, there is no guarantee that

inflation will always be more pronounced in the standard errors. As we see with the Sig-

norino and Tarar (2006) replication, below, and as Cook et al. (2018) show in their analysis

of the multinomial logit, there are cases where separation appears present, based on visual or

lp diagnostics, and the null hypothesis is rejected only when the issue goes unnoticed/uncor-

rected. As such, it is not obvious that separation is relatively harmless from a type-1 error

perspective. Additionally, type-1 errors are not the only mistakes that matter. With inflated

standard errors, type-2 errors may become more pronounced as well. Unsurprisingly given

their variances, the uncorrected estimators have extremely low (zero) power with respect to

the hypothesis β1 = 0. In contrast, the BR estimators correctly reject the null hypotheses

at high rates. The high power and coverage of the BR estimators highlights their usefulness

at producing both reasonable estimates and inference when separation is present.

3.4 Choice Probabilities

Moving beyond the point estimates, p̂B plays a key part in fitting the model, particularly

for the SBI. As such, we want to know if any of these corrections have negative consequences

on estimating pB. In Table 2, we consider the statistical properties of p̂B. Because XB is

binary, there are only two values that pB can take on, making it easy to break down this

analysis by XB. There are three important takeaways from these results. First, the BR-

FIMLs are more biased when estimating pB when XB = 0, this result matches Rahman and

Sultana (2017) who finds that BR correction in the parameters can sometimes make bias

in predicted probabilities worse. Second, despite this bias when XB = 0 the BR estimators

offer modest improvements in RMSE when XB = 0 and substantial improvements in both

bias and RMSE when XB = 1. These latter results are unsurprising given the inflation in
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β̂1. Third, when combining the results we see that the three BR-FIMLs are most preferred

from a RMSE perspective, despite having more bias when XB = 0. The bias and RMSE

improvements they offer when XB = 1 offset these concerns in this experiment.

Table 2: Bias and RMSE in estimating pB

XB = 0 XB = 1 Combined
Bias RMSE Bias RMSE Bias RMSE

Ordinary SBI 0.003 0.084 0.017 0.017 0.010 0.061
BR-SBI 0.008 0.082 -0.003 0.006 0.002 0.058

Ordinary FIML -0.009 0.076 0.017 0.017 0.004 0.055
BR-FIML (Firth) 0.015 0.072 -0.002 0.005 0.006 0.051

BR-FIML (Cauchy) 0.013 0.074 0.007 0.008 0.010 0.052
BR-FIML (log-F ) 0.022 0.074 0.003 0.005 0.012 0.053

4 Application: Deterrence in interstate disputes

We now reexamine results from Signorino and Tarar 2006 who study deterrence in in-

terstate disputes using data on 58 crises between 1885 and 1983. The players in this game

are an aggressor and defender state. The aggressor (A) decides between attacking a protégé

state of the defender (B) or preserving the status quo. If A chooses the latter, the game ends,

but if A chooses the former, then the defender can either protect its protégé or back down.

The dependent variable takes on three values: status quo, attack-war, attack-back down.

Appendix C contains descriptions of the independent variables and the model specification.

We start by applying the lp-diagnostic to the data. The diagnostic results are reported in

Table 3, where four of five checks provide evidence of separation.9

Compounding the separation problem is the issue of fitting a complicated strategic model

to a relatively small sample. In replicating these results, we found that the determinant of the

FIML information matrix is negative at many steps in the optimization process, making the

logged Jeffreys prior penalty term undefined. As a result, we use the log-F penalty as it does

not rely on the curvature of the baseline log-likelihood and performed well in simulations.

The BR-SBI continues to use the Jeffreys prior penalty here as the probit objective function

9We also consider an application where we believe separation is not present in Appendix D.
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Table 3: Checking for separation in Signorino and Tarar (2006)

Regressors Outcome Result
XB yB | yA = 1 Yes
ZSBI yA No
[ZFIML XB] I(yA = 0) Yes
[ZFIML XB] I(yA = 1)I(yB = 0) Yes
[ZFIML XB] I(yA = 1)I(yB = 1) Yes
Note: The Z variables are transformed using estimates of pB from the unpenalized estimators.

does not have the same complexity as the FIML, the penalty always exists, and it remains

the most common choice for binary-outcome models. Beyond these difficulties, we also note

that fitting a 21 parameter strategic model with 58 observations is a demanding proposition.

Nonetheless, this example provides us with a clear case where separation is present.

The results are presented in Table 4. Fitting the ordinary SBI produced severe numerical

instability; as such, the estimates and standard errors are the means and standard deviations

from a non-parametric bootstrap where we discard results beyond ±50 to keep everything

on roughly the same scale across the estimators. The fact that we even had to consider this

approach with the SBI is a warning against using an uncorrected model. There are slight

differences between the replicated FIML and published results, which we attribute to slight

differences in software implementation.

What is most striking about the results in Table 4 is that while many of the point esti-

mates have the same sign across all four estimators, some results that were significant in the

Signorino and Tarar (2006) analysis are no longer significant at traditional levels. Addition-

ally, we note that the estimates and standard errors on the uncorrected SBI are incredibly

large despite the precautions we took to make the estimates appear more reasonable. Com-

bining this observation with the lp-diagnostic results provides us with good reason to suspect

that a BR estimator may be more appropriate. Indeed, the two BR estimators largely agree

with each other in terms of magnitude and sign in 18 out of 21 estimates, although in the

BR-SBI case fewer estimates are statistically significant at standard levels. This difference

may result from the relative inefficiency of the two-step estimator.
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The fact that a few estimates change signs across the estimators is an interesting puzzle.

Specifically, cases where signs are different across the ordinary-SBI and BR-SBI are unex-

pected. Correcting for separation is not supposed to change the direction of an estimate,

although Beiser-McGrath (2020) notes that this can happen in some binary-outcome cases

with the Jeffreys prior penalty. He finds this to be the case in large, rare-events data. Here,

however, we see sign flips in small, even-event data, and it also occurs with the density-based

penalties. These unexplained sign flips may suggest that there may be some heretofore un-

known issues with BR estimation in (very) small samples. In some exploratory simulations,

we find that sign flips can happen in small, highly colinear samples like this one, but we can-

not be certain that colinearity is causing the sign flips here. Future work should spend more

time on this puzzle as it is very unusual to see signs change when applying PL methods.

In examining player B’s (the defender’s) utility function, Signorino and Tarar (2006)

find that the defender is more likely to support its protégé if B has nuclear weapons, if

the protégé imports a lot of arms from B, and if there was a past, but unresolved, crisis

between the defender and the aggressor (2006, 593). Our analysis concurs with these results

in terms of sign, but only the effect of nuclear weapons remains significant at the 5% level.

The overall decrease in coefficient magnitudes is consistent with a separation problem. The

changes in significance suggest that some original findings resulted from separation-induced

inflation in the point estimates that exceeded the inflation in the standard errors. Many of

these findings may, of course, still be true, but we cannot reject these null hypotheses with

these data once we correct for separation.

The uncorrected SBI is the most conservative model here: it rejects no hypotheses and,

as such, makes no type-1 errors. In contrast, we may suspect that the uncorrected FIML

is guilty of some type-1 errors, making the SBI, and its extreme results, a safe choice for

cautious analysts. However, this protection against type-1 errors comes at the cost of power.

Based on the simulations in Table 1 and in Appendix B we find that the uncorrected SBI has

almost no power to identify effects on coefficients where separation is a concern. Analysts can
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Table 4: Signorino and Tarar Replication

FMLE SBI BR-FMLE BR-SBI

UA(SQ): Const. −5.04 −5.69 −1.30 −3.06
(2.39) (6.70) (1.65) (1.75)

UA(SQ): Tit-for-Tat 17.27 2.13 2.47 1.40
(7.22) (2.24) (1.04) (0.62)

UA(SQ): Firm-Flex 6.59 1.05 1.26 0.61
(3.26) (2.44) (0.88) (0.59)

UA(SQ): Democratic Attacker 15.75 −0.40 0.52 −0.65
(8.60) (3.96) (1.57) (0.93)

UA(SQ): Year −0.35 −0.03 −0.03 −0.01
(0.18) (0.05) (0.03) (0.01)

UA(BD): Const. 13.51 −7.34 1.94 −3.03
(12.76) (6.75) (2.83) (2.18)

UA(War): Nuclear −9.13 −0.50 −0.99 −0.90
(5.00) (10.55) (1.47) (1.95)

UA(War): Immediate Balance −12.51 −2.93 −1.43 −1.15
(5.26) (6.28) (1.10) (0.64)

UA(War): Short-term Balance −6.22 −3.84 −1.89 −3.18
(3.26) (7.34) (1.62) (1.80)

UA(War): Long-term Balance 3.35 0.83 0.45 0.69
(1.57) (2.57) (0.50) (0.53)

UA(War): Military Alliance 12.62 1.92 2.53 1.31
(5.23) (3.49) (1.37) (1.10)

UA(War): Arms Transfers −0.86 −0.23 −0.16 −0.06
(0.49) (0.35) (0.16) (0.13)

UB(War): Const. −10.93 −20.30 −2.71 −1.07
(5.88) (15.84) (1.32) (1.43)

UB(War): Nuclear 6.64 −3.52 2.41 0.13
(2.62) (20.04) (1.10) (1.74)

UB(War): Immediate Balance 5.46 16.46 1.22 0.66
(2.90) (14.73) (0.74) (0.88)

UB(War): Short-term Balance 4.16 3.80 1.24 0.25
(2.37) (15.06) (0.79) (1.09)

UB(War): Military Alliance 13.39 11.69 1.64 2.39
(7.61) (19.37) (1.59) (1.86)

UB(War): Arms Transfers −1.75 −1.47 −0.29 −0.38
(0.86) (2.09) (0.23) (0.24)

UB(War): Foreign Trade 4.85 5.96 0.90 0.71
(2.55) (2.71) (0.54) (0.41)

UB(War): Stalemate 8.40 16.37 1.38 1.79
(4.21) (14.65) (1.12) (1.18)

UB(War): Democratic Defender 5.93 1.72 1.08 −0.02
(2.86) (11.34) (0.87) (1.05)

Observations 58 58 58 58
Notes: Standard errors in parentheses (Model 6 is bootstrapped)
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weigh their own acceptance for type-1 and type-2 errors, but we find that the BR estimators

present a good balance between these two concerns.
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Figure 3: Profiled log-likelihood on the coefficient associated with how a military alliance
affects B’s decision to intervene.

To better demonstrate these numeric issues and illustrate how the BR corrections work

we consider the profiled log-likelihood of the FIML, the BR-FIML, and the BR-SBI for

the coefficient on military alliance in B’s utility function. We focus on this variable as

the uncorrected coefficient estimate of about 13 (against a scale of
√

2) is suggestive of a

separation problem. The profiling procedure fixes the value of a single coefficient and refits

the model. Repeating this procedure at many values demonstrates the model’s sensitivity

to changes in this estimate. For a well-behaved problem, we would expect a classic upside-

down U shape with a maximum at the estimated parameter value. The profiled results are
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shown in Figure 3. Specifically, for the ordinary FIML (top pane) there appears to be a local

maxima at the estimate, but model fit can be improved by increasing this estimate past

positive 20. Put another way, while the estimate is a local maximum, it is not the global

maximum; “better” fit can be found at estimates further toward∞. This push towards ±∞

is the classic sign of the separation problem. Looking at the two BR profiles we see that,

at least in the range considered, the estimates are at the maximum. Note that the BR-SBI

has a flattish section at the right-hand end of the plot, however, this drops off quickly if we

explore past this region, and we find no reason to suspect that there are better log-likelihood

values beyond the range presented here.

5 Conclusions and Recommendations

Penalized likelihood methods provide a useful technique for addressing separation in

discrete choice modeling. In this paper, we adapt PL methods to estimate the parameters

from extensive form games of incomplete information. Using Monte Carlo experiments and

replication analysis we find that the BR estimators offer substantial gains in bias, RMSE, and

numerical stability. We offer two strategies (BR-SBI and BR-FIML) that provide analysts

with options for fitting games to data where separation problems exists. The BR-SBI is easily

implemented using the existing R package brglm, while we offer our own R package, games2,

for fitting the BR-FIML. Additionally, we describe tools to diagnose separation in situations

where software does not issue warnings and standard visual inspections are less clear because

of differences in the scale parameters. Our recommendation uses the linear programming

diagnostic from Konis (2007). We detail five ways to use this tool with strategic models that

are fast and easy for analysts.

Additionally, the simulations and application allow us to note some limitations in PL

methods for fitting strategic models. Notably, fitting strategic models to small samples can

be very demanding of the data and lead to numeric concerns beyond just separation. For

example, in the Signorino and Tarar (2006) application we found the Jeffreys prior approach
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to be unreliable as the Hessian of log-likelihood function was not negative definite at many

guesses of the parameters. This experience leads to our first piece of advice: When the

Jeffreys prior struggles, analysts should consider one of the density based penalizations.

While we observe that log-F (1, 1) tends to be the best choice, we found almost no cases

where the differences between the log-F and Cauchy penalties are pronounced. As such,

analysts should feel comfortable with either of these approaches, even with small samples.

That said, sensitivity to the exact penalty may indicate that there is not enough information

to provide meaningful analysis. At this point, analysts may want to consider using a less

demanding model. This leads to our second piece of advice: To the extent that various

penalties might produce difference results, analysts should note any differences and consider

additional analysis to assess the sensitivity of their results to the penalty choice. This

analysis may require additional programming as analysts may want to try a range of (non-

standardized) t, log-F (m,m), or other distributions in assessing this sensitivity.

Several avenues of future work present themselves. First, researchers should consider ex-

tending the BR framework even further into the empirical analysis of discrete choice games.

For example, extensive-form signaling models are also common in EITM studies of interna-

tional relations (e.g., Crisman-Cox and Gibilisco 2021). Extending the BR framework could

be helpful for scholars interested in empirical models of strategic interactions.

Second, more work should be done on the benefits that BR estimation can bring to

small-sample strategic models even absent separation concerns. As mentioned, the original

contribution from Firth (1993) was to reduce finite-sample bias in logit models. It is likely

that BR estimation can be helpful to strategic models in this context, however, more anal-

ysis needs to be considered regarding the trade-off between improved point estimation and

potentially worse estimation of choice probabilities. This analysis is particularly important

with strategic models given their endogenous construction. With separation, we find some

evidence that this trade-off exists in strategic case, but that the benefits outweigh the costs

in the cases we considered. More work should assess this trade-off in finite samples absent
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separation.

Finally, there are many discrete choice models that may be vulnerable to separation and

where scholars may benefit from knowing more about how well standard corrections work.

For example, bivariate, multinomial, and spatial probits along with various tobit models (e.g.,

selection models) all involve categorical outcome that can be affected by separation, but it

remains an open question as to how well different penalization solutions perform in these

cases. Given recent concerns about the Jeffreys prior approach in international relations

data (e.g., Beiser-McGrath 2020) and our own problems with Jeffreys in the Signorino and

Tarar (2006) example, more analysis of density based solutions in these more complicated

models will be highly useful.
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